과제정보
Financial support to complete this study is provided in part by the National Natural Science Foundation of China (Grant No. 51979130) and Postdoctoral Research Funding Program of Jiangsu Province (Grant No. 2021K562C). The results and opinions expressed in this paper are those of the authors only and they don't necessarily represent those of the sponsors.
참고문헌
- Abratkiewicz, K. (2020), "Double-adaptive chirplet transform for radar signature extraction", IET Radar Sonar Nav., 14(10), 1463-1474. https://doi.org/10.1049/iet-rsn.2020.0084
- Angrisani, L. and D'Arco, M. (2002), "A measurement method based on a modified version of the chirplet transform for instantaneous frequency estimation", IEEE T. Instrum. Meas., 51(4), 704-711. https://doi.org/10.1109/TIM.2002.803295
- Chen, P., Wang, K., Zuo, M.J. and Wei, D. (2019), "An ameliorated synchroextracting transform based on upgraded local instantaneous frequency approximation", Measurement, 148, 106953. https://doi.org/10.1016/j.measurement.2019.106953
- Djurovic, I. and Stankovic, L.J. (2004), "An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment", Signal Process., 84(3), 631-643. https://doi.org/10.1016/j.sigpro.2003.12.006
- Guan, Y. and Feng, Z. (2021), "Adaptive linear chirplet transform for analyzing signals with crossing frequency trajectories", IEEE Trans. Ind. Electron., 69(8), 8396-8410. https://doi.org/10.1109/TIE.2021.3097605
- Guan, Y., Liang, M. and Necsulescu, D.S. (2018), "Velocity synchronous linear chirplet transform", IEEE Trans. Ind. Electron., 66(8), 6270-6280. https://doi.org/10.1109/TIE.2018.2873520
- Hartono, D., Halim, D. and Roberts, G.W. (2019), "Gear fault diagnosis using the general linear chirplet transform with vibration and acoustic measurements", J. Low Freq. Noise V. A., 38(1), 36-52. https://doi.org/10.1177/1461348418811717
- Jin, Y., Gao, D. and Ji, H.B. (2017), "Parameter estimation of LFM signals based on synchrosqueezing chirplet transform in complicated noise", J. Electron. Inf. Techn., 39(08), 1906-1912. https://doi.org/10.11999/JEIT161222
- Li, Z. and Crocker, M.J. (2006), "A study of joint time-frequency analysis-based modal analysis", IEEE T. Instrum. Meas., 55(6), 2335-2342. https://doi.org/10.1109/TIM.2006.884137
- Li, M., Wang, T., Chu, F., Han, Q. and Zhou, M. (2020), "Scaling-basis chirplet transform", IEEE T. Ind. Electron., 68(9), 8777-8788. https://doi.org/10.1109/TIE.2020.3013537
- Mann, S. and Haykin, S. (1992), "Adaptive chirplet transform: an adaptive generalization of the wavelet transform", Opt. Eng., 31(6), 1243-1256. https://doi.org/10.1117/12.57676
- Mann, S. and Haykin, S. (1995), "The chirplet transform: Physical considerations", IEEE T. Signal Proces., 43(11), 2745-2761. https://doi.org/10.1109/78.482123
- Mihovilovic, D. and Bracewell, R.N. (1992), "Whistler analysis in the time-frequency plane using chirplets", J. Geophys. Res.-Space, 97, 17199-17204. https://doi.org/10.1029/92JA01140
- Pang, C.S., Liu, L. and Shan, T. (2014), "Time-frequency analysis method based on short time fractional Fourier transform", Acta Electronica Sinica, 42(02), 347-352.
- Peng, F., Yu, D. and Luo, J. (2011), "Sparse signal decomposition method based on multi-scale chirplet and its application to gear fault diagnosis", Mech. Syst. Signal Pr., 25(2), 549-557. https://doi.org/10.1016/j.ymssp.2010.06.004
- Senthil Pandi, S., Senthilselvi, A., Maragatharajan, M. and Manju, I. (2022), "An optimal self adaptive deep neural network and spine-kernelled chirplet transform for image registration", Concurr. Comp.-Pract. E., 34(27), e7297. https://doi.org/10.1002/cpe.7297
- Stockwell, R.G., Mansinha, L. and Lowe, R.P. (1996), "Localization of the complex spectrum: the S transform", IEEE T. Signal Proces., 44(4), 998-1001. https://doi.org/10.1109/78.492555
- Yan, H.S., Li, D. and Ding, L.G. (2015), "A new time-frequency analysis approach based on short time Fourier transform", Acta Armamentarii, 36(S2), 258-261.
- Yang, Y., Peng, Z.K., Meng, G. and Zhang, W.M. (2011), "Spline-kernelled chirplet transform for the analysis of signals with time-varying frequency and its application", IEEE T. Ind. Electron., 59(3), 1612-1621. https://doi.org/10.1109/TIE.2011.2163376
- Yang, Y., Peng, Z.K., Dong, X.J., Zhang, W.M. and Meng, G. (2014), "General parameterized time-frequency transform", IEEE T. Signal Proces., 62(11), 2751-2764. https://doi.org/10.1109/TSP.2014.2314061
- Yu, G. and Zhou, Y. (2016), "General linear chirplet transform", Mech. Syst. Signal Pr., 70, 958-973. https://doi.org/10.1016/j.ymssp.2015.09.004
- Yuan, P.P., Cheng, X.L., Wang H.H., Zhang, J., Shen, Z.X. and Ren, W.X. (2021), "Structural instantaneous frequency extraction based on improved multi-synchrosqueezing generalized S-transform", Smart Struct. Syst., Int. J., 28(5), 675-687. https://doi.org/10.12989/sss.2021.28.5.675
- Yuan, P.P., Zhang, J., Feng, J.Q., Wang, H.H., Ren, W.X. and Wang, C. (2022), "An improved time-frequency analysis method for structural instantaneous frequency identification based on generalized S-transform and synchroextracting transform", Eng. Struct., 252, 113657. https://doi.org/10.1016/j.engstruct.2021.113657
- Zhang, L.X., Jia, Y.H., Xu, M.P., Hong, Z., Zhao, X., He, F., Wan, B.K. and Jiao, X.J. (2014), "Chirp stimuli visual evoked potential based brain-computer interface by chirplet transform algorithm", Nanotechnol. Precis. Eng., 12(03), 157-161.
- Zhu, X., Zhang, Z., Gao, J. and Li, W. (2019a), "Two robust approaches to multicomponent signal reconstruction from STFT ridges", Mech. Syst. Signal Pr., 115, 720-735. https://doi.org/10.1016/j.ymssp.2018.06.047
- Zhu, X., Zhang, Z., Gao, J., Li, B., Li, Z., Huang, X. and Wen, G. (2019b), "Synchroextracting chirplet transform for accurate IF estimate and perfect signal reconstruction", Digit. Signal Process., 93, 172-186. https://doi.org/10.1016/j.dsp.2019.07.015