DOI QR코드

DOI QR Code

Real-time estimation of responses and loads of real-scale pipes subjected to earthquakes and external loads using digital twin technology

  • Dongchang Kim (School of Convergence & Fusion System Engineering, Kyungpook National University) ;
  • Shinyoung Kwag (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Sung-Jin Chang (Seismic Research and Test Center, Pusan National University) ;
  • Seunghyun Eem (School of Convergence & Fusion System Engineering, Kyungpook National University)
  • 투고 : 2023.07.24
  • 심사 : 2024.05.27
  • 발행 : 2024.05.25

초록

Infrastructure facilities contain various pipe systems, which can be considerably damaged by external loads such as earthquakes. Therefore, structural health monitoring (SHM) and safety assessment of pipes are crucial. Digital twin technology for SHM of pipes is important in the industry. This study proposes a digital twin system that estimates the behavior, stress, and external load of real-scale pipes in real time under simultaneous seismic and external loads using a minimum number of sensors. Vibration tests were performed to construct the digital twin system, and a numerical model was developed that considered the dynamic characteristics of a target pipe. Moreover, a reduced-order modeling technique of a numerical model was applied to enhance its real-time performance. The digital twin system successfully estimated the response of the pipe at all points. Verification of the digital twin system was performed by comparing it with the experimental parameters of a real-scale pipe. The proposed digital twin system can help enhance SHM and system's maintenance.

키워드

과제정보

This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20224B10200050) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government (Ministry of Trade, Industry, and Energy) (No. 20224000000150).

참고문헌

  1. Arrayago, I., Rasmussen, K.J. and Zhang, H. (2022), "System-based reliability analysis of stainless steel frames subjected to gravity and wind loads", Struct. Safety, 97(102211). https://doi.org/10.1016/j.strusafe.2022.102211
  2. Cai, J., Jiang, X. and Lodewijks, G. (2017), "Residual ultimate strength of offshore metallic pipelines with structural damage-a literature review", Ships Offshore Struct., 12(8), 1037-1055. https://doi.org/10.1080/17445302.2017.1308214
  3. Craig Jr, R.R. and Bampton, M.C. (1968), "Coupling of substructures for dynamic analyses", AIAA J., 6(7), 1313-1319. https://doi.org/10.2514/3.4741
  4. Cruz, A.M. and Krausmann, E. (2008), "Damage to offshore oil and gas facilities following hurricanes Katrina and Rita: An overview", J. Loss Prevent. Process Industr., 21(6), 620-626. https://doi.org/10.1016/j.jlp.2008.04.008
  5. Duthinh, D. and Simiu, E. (2010), "Safety of structures in strong winds and earthquakes: multihazard considerations", J. Struct. Eng., 136(3), 330-333. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000108
  6. Eie, L.M. (2018), "Investigating an approach for estimation of forces using inverse FEA utilizing digital twin", M.Sc. Thesis; Norwegian University of Science and Technology, Norway.
  7. Fleming, K.N. and Lydell, B.O. (2004), "Database development and uncertainty treatment for estimating pipe failure rates and rupture frequencies", Reliabil. Eng. Syst. Safety, 86(3), 227-246. https://doi.org/10.1016/j.ress.2004.01.013
  8. Gattulli, V., Franchi, F., Graziosi, F., Marotta, A., Rinaldi, C., Potenza, F. and Sabatino, U.D. (2022), "Design and evaluation of 5G-based architecture supporting data-driven digital twins updating and matching in seismic monitoring", Bull. Earthq. Eng., 20(9), 4345-4365. https://doi.org/10.1007/s10518-022-01329-8
  9. Gim, M.U., Jeon, B.G. and Chang, S.J. (2021), "Vibration table experiment of real-scale piping for performance evaluation of copper absorber for piping", Korea Construction and Transport Engineering Development Collaboratory Management Institute (KOCED).
  10. Han, J. (2020), "Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading", Struct. Eng. Mech., Int. J., 76(5), 643-651. https://doi.org/10.7734/COSEIK.2021.34.2.101
  11. Hong, Y.H., Lee, S.G. and Lee, H.S. (2013), "Design of the FEM-FIR filter for displacement reconstruction using accelerations and displacements measured at different sampling rates", Mech. Syst. Signal Process., 38(2), 460-481. https://doi.org/10.1016/j.ymssp.2013.02.007
  12. Jones, D., Snider, C., Nassehi, A., Yon, J. and Hicks, B. (2020), "Characterising the digital twin: A systematic literature review", CIRP J. Manuf. Sci. Technol., 1(29), 36-52. https://doi.org/10.1016/j.cirpj.2020.02.002
  13. Karlsson, S.E.S. (1996), "Identification of external structural loads from measured harmonic responses", J. Sound Vib., 196(1), 59-74. https://doi.org/10.1006/jsvi.1996.0467
  14. Kawsar, M.R.U., Youssef, S.A., Faisal, M., Kumar, A., Seo, J.K. and Paik, J.K. (2015), "Assessment of dropped object risk on corroded subsea pipeline", Ocean Eng., 15(106), 329-340. https://doi.org/10.1016/j.oceaneng.2015.06.056
  15. Khajavi, S.H., Motlagh, N.H., Jaribion, A., Werner, L.C. and Holmstrom, J. (2019), "Digital twin: vision, benefits, boundaries, and creation for buildings", IEEE access, 9(7), 147406-114749. https://doi.org/10.1109/ACCESS.2019.2946515
  16. Khan, F.I. and Abbasi, S.A. (1999), "Major accidents in process industries and an analysis of causes and consequences", J. Loss Prevent. Process Industr., 12(5), 361-378. https://doi.org/10.1016/S0950-4230(98)00062-X
  17. Kim, J.B. and Jeong, J.H. (2017), "Introduction to Seismic Simulation Test Center and Experimental Cases", Computat. Struct. Eng., 30(2), 5-10. [In Korean]
  18. Kim, D.C., Kim, G.G., Kwag, S.Y. and Eem, S.H. (2023), "Constructing a digital twin for estimating the response and load of a piping system subjected to seismic and arbitrary loads", Smart Struct. Syst., Int. J., 31(3), 275-281. https://doi.org/10.12989/sss.2023.31.3.275
  19. Kwag, S., Eem, S., Kwak, J., Lee, H., Oh, J. and Koo, G.H. (2021), "Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device", Nuclear Eng. Technol., 53(8), 2728-2745. https://doi.org/10.1016/j.net.2021.02.009
  20. Kwag, S., Kim, D., Kim, G. and Eem, S. (2023), "Constructing a digital twin for estimating the response and load of a piping system subjected to seismic and arbitrary loads", Smart Struct. Syst., Int. J., 31(3), 275-281. https://doi.org/10.12989/sss.2023.31.3.275
  21. Law, S.S., Bu, J.Q. and Zhu, X.Q. (2005), "Time-varying wind load identification from structural responses", Eng. Struct., 27(10), 1586-1598. https://doi.org/10.1016/j.engstruct.2005.05.007
  22. Lee, H.S., Hong, Y.H. and Park, H.W. (2010), "Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures", Int. J. Numer. Methods Eng., 82(4), 403-434. https://doi.org/10.1002/nme.2769
  23. Li, M., Feng, X. and Han, Y. (2022), "Brillouin fiber optic sensors and mobile augmented reality-based digital twins for quantitative safety assessment of underground pipelines", Automat. Constr., 144(104617). https://doi.org/10.1016/j.autcon.2022.104617
  24. Lin, K., Xu, Y.L., Lu, X., Guan, Z. and Li, J. (2021), "Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes", Automat. Constr., 123(103547). https://doi.org/10.1016/j.autcon.2020.103547
  25. Lin, K., Xu, Y.L., Lu, X., Guan, Z. and Li, J. (2023), "Digital twin-based life-cycle seismic performance assessment of a long-span cable-stayed bridge", Bull. Earthq. Eng., 21(2), 1203-1227. https://doi.org/10.1007/s10518-022-01567-w
  26. Madni, A.M., Madni, C.C. and Lucero, S.D. (2021), "Leveraging digital twin technology in model-based systems engineering", Systems, 7(1), 7. https://doi.org/10.3390/systems7010007
  27. Martin, J., Alipour, A. and Sarkar, P. (2019), "Fragility surfaces for multi-hazard analysis of suspension bridges under earthquakes and microbursts", Eng. Struct., 197(109169). https://doi.org/10.1016/j.engstruct.2019.05.011
  28. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098
  29. Oh, S., Park, D., Baek, H., Kim, S., Lee, J.K. and Kim, J.G. (2020), "Virtual sensing system of structural vibration using digital twin", Trans. Korean Soc. Noise Vib. Eng., 30(2), 149-160. https://doi.org/10.5050/KSNVE.2020.30.2.149
  30. Oh, S., Lee, K.H., Ahn, K., Yu, Y., Kim, K. and Kim, J.G. (2021), "Development of vibro-acoustic virtual sensing system for pipeline structure using digital twin", Transact. Korean Soc. Mech. Engr., A, 45(9), 805-815. https://doi.org/10.3795/KSME-A.2021.45.9.805
  31. Oh, S., Lee, H., Lee, J.K., Yoon, H. and Kim, J.G. (2022), "Real-time response estimation of structural vibration with inverse force identification", Structural Control and Health Monitoring, 2023. https://doi.org/10.1155/2023/2691476.
  32. Oh, S., Ahn, C.U., Ahn, K. and Kim, J.G. (2023a), "Implicit inverse force identification method for vibroacoustic finite element model", J. Sound Vib., 556, 117713. https://doi.org/10.1016/j.jsv.2023.117713
  33. Oh, S., Baek, H., Lee, K.H., Jang, D.S., Jun, J. and Kim, J.G. (2023b), "A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system", Nuclear Eng. Technol., 55(7), 2642-2649. https://doi.org/10.1016/j.net.2023.03.030
  34. O'Rourke, T.D., Toprak, S. and Sano, Y. (1998), "Factors affecting water supply damage caused by the Northridge earthquake", In: US-Japan Workshop on Earthquake Disaster Prevention for Lifeline Systems.
  35. Persson, P., Persson, K. and Sandberg, G. (2016), "Reduced order modelling of liquid-filled pipe systems", J. Fluids Struct., 61, 205-217. https://doi.org/10.1016/j.jfluidstructs.2015.10.012
  36. Phanden, R.K., Sharma, P. and Dubey, A. (2021), "A review on simulation in digital twin for aerospace, manufacturing and robotics", Mater. Today: Proceed., 1(38), 174-178. https://doi.org/10.1016/j.matpr.2020.06.446
  37. Regulatory Guide 1.60. (2014), Design response spectra for seismic design of nuclear power plants; U.S. Nuclear Regulatory Commission.
  38. Regulatory Guide 1.61. (2007), Damping values for seismic design of nuclear power plants; U.S. Nuclear Regulatory Commission.
  39. Rossi, L., Moreno, V.C. and Landucci, G. (2022), "Vulnerability assessment of process pipelines affected by flood events", Reliabil. Eng. Syst. Safety, 219, 108261. https://doi.org/10.1016/j.ress.2021.108261
  40. Semke, W.H., Bibel, G.D., Jerath, S., Gurav, S.B. and Webster, A.L. (2006), "Efficient dynamic structural response modelling of bolted flange piping systems", Int. J. Press. Vessels Pip., 83(10), 767-776. https://doi.org/10.1016/j.ijpvp.2006.06.003
  41. Souza, M.L.H., da Costa, C.A. and de Oliveira Ramos, G. (2023), "A machine-learning based data-oriented pipeline for Prognosis and Health Management Systems", Comput. Indust., 148(103903). https://doi.org/10.1016/j.compind.2023.103903
  42. Teixeira, A.P., Soares, C.G., Netto, T.A. and Estefen, S.F. (2008), "Reliability of pipelines with corrosion defects", Int. J. Press. Vessels Piping, 85(4), 228-237. https://doi.org/10.1016/j.ijpvp.2007.09.002
  43. Uhl, T. and Petko, M. (2002), "Smart sensor for operational load measurements", J. Theor. Appl. Mech., 40(3), 797-815.
  44. Wakamatsu, K., Nagata, S., Maruyama, Y. and Ozawa, K. (2016), "Sendai water pipeline response to the 2011 Tohoku earthquake", J. Civil Eng. Architect., 10, 461-470. https://doi.org/10.17265/1934-7359/2016.04.009
  45. Wiggert, D.C., Hatfield, F.J. and Stuckenbruck, S. (1987), "Analysis of liquid and structural transients in piping by the method of characteristics", J. Fluids Eng., 109(2), 161-165. https://doi.org/10.1115/1.3242638
  46. Wright, L. and Davidson, S. (2020), "How to tell the difference between a model and a digital twin", Adv. Model Simul. Eng. Sci., 7(1), 1-13. https://doi.org/10.1186/s40323-020-00147-4
  47. Wu, W.S., Yang, C.F., Chang, J.C., Chateau, P.A. and Chang, Y.C. (2015), "Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project", Reliabil. Eng. Syst. Safety, 1(142), 515-524. https://doi.org/10.1016/j.ress.2015.06.013
  48. Zipper, H., Auris, F., Strahilov, A. and Paul, M. (2018), "Keeping the digital twin up-to-date-Process monitoring to identify changes in a plant", In: 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 1592-1597. https://doi.org/10.1109/ICIT.2018.8352419