DOI QR코드

DOI QR Code

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen (School of Science, Guangdong University of Petrochemical Technology) ;
  • Yahui Meng (School of Science, Guangdong University of Petrochemical Technology) ;
  • Ruei-Yuan Wang (School of Science, Guangdong University of Petrochemical Technology) ;
  • Timothy Chen (California Institute of Technology)
  • 투고 : 2023.01.03
  • 심사 : 2023.10.27
  • 발행 : 2024.05.25

초록

This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

키워드

참고문헌

  1. Alves, S., Babcinschi, M., Silva, A., Neto, D., Fonseca, D. and Neto, P. (2023), "Integrated design fabrication and control of a bioinspired multimaterial soft robotic hand", Cyborg Bionic Syst., 4, 51. https://doi.org/10.34133/cbsystems.0051
  2. Bai, X., He, Y. and Xu, M. (2021), "Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form", IEEE Transact. Aerosp. Electron. Syst., 57(5), 3279-3295. https://doi.org/10.1109/TAES.2021.3074204
  3. Battista, R.C. and Varela, W.D. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., Int. J., 23(5), 467-478. https://doi.org/10.12989/sss.2019.23.5.467
  4. Bedirhanoglu, I. (2020), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., Int. J., 51(2), 249-265. https://doi.org/10.12989/sem.2020.51.2.249
  5. Cai, L., Yan, S., Ouyang, C., Zhang, T., Zhu, J., Chen, L., Ma, X. and Liu, H. (2023), "Muscle synergies in joystick manipulation", Front. Physiol., 14, p. 1282295. https://doi.org/10.3389/fphys.2023.1282295
  6. Cao, X., Huang, X., Zhao, Y., Sun, Z., Li, H., Jiang, Z. and Ceccarelli, M. (2023), "A Method of Human-Like Compliant Assembly Based on Variable Admittance Control for Space Maintenance", Cyborg Bionic Syst., 4, 46. https://doi.org/10.34133/cbsystems.0046
  7. Casciati, F. (1997), "Checking the stability of a fuzzy controller for nonlinear structures", Microcomput. Civil Eng., 12, 205-215. https://doi.org/10.1111/0885-9507.00057
  8. Casciati, F. and Casciati, S. (2016), "Designing the control law on reduced-order models of large structural systems", Struct. Control Health Monitor., 23, 707-718. https://doi.org/10.1002/stc.1805
  9. Casciati, F. and Casciati, S. (2018), "Amelioration and retrofitting of educational buildings", Earthq. Eng. Eng. Vib., 17(1), 47-51. https://doi.org/10.1007/s11803-018-0424-2
  10. Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: from the prototype to the model", Struct. Control Health Monitor., 16, 751-765. https://doi.org/10.1002/stc.328
  11. Casciati, F. and Faravelli, L. (2016), "Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach", Smart Struct. Syst., Int. J., 18(1), 1-16. https://doi.org/10.12989/s.2016.18.1.001
  12. Casciati, F., Faravelli, L. and Yao, T. (1996), "Control of nonlinear structures using the fuzzy control approach", Nonlinear Dyn., 11, 171-187. https://doi.org/10.1007/BF00045000
  13. Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), "Toward a paradigm for civil structural control", Smart Struct. Syst., Int. J., 14(5), 981-1004. https://doi.org/10.12989/sss.2014.14.5.981
  14. Casciati, F., Casciati, S., Elia, L. and Faravelli, L. (2017), "Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge", Smart Struct. Syst., Int. J., 17(3), 523-539. https://doi.org/10.12989/SSS.2016.17.3.523
  15. Chen, B., Hu, J., Zhao, Y. and Ghosh, B.K. (2022), "Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach", Neurocomput., 481, 322-332. https://doi.org/10.1016/j.neucom.2022.01.038
  16. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D. and Chen, J. (2017), "Situation-aware dynamic service coordination in an IoT environment", IEEE/ACM Transact. Network., 25(4), 2082-2095. https://doi.org/10.1109/TNET.2017.2705239
  17. Di, Y., Li, R., Tian, H., Guo, J., Shi, B., Wang, Z., Yan, K. and Liu, Y. (2023), "A maneuvering target tracking based on fastIMM-extended Viterbi algorithm", Neural Comput. Applicat. https://doi.org/10.1007/s00521-023-09039-1
  18. Fang, Z., Wang, J., Liang, J., Yan, Y., Pi, D., Zhang, H. and Yin, G. (2024), "Authority allocation strategy for shared steering control considering human-machine mutual trust level", IEEE Transact. Intell. Vehicl., 9(1), 2002-2015. https://doi.org/10.1109/TIV.2023.3300152
  19. Faravelli, L. and Yao, T. (1996), "Use of adaptive networks in fuzzy control of civil structures", Comput.-Aided Civil Infrastruct. Eng., 11(1), 67-76. https://doi.org/10.1111/j.1467-8667.1996.tb00310.x
  20. Gao, Q., Ding, Z. and Liao, W.H. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269
  21. Guo, C. and Hu, J. (2023), "Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance", IEEE Transact. Circuits Syst. II: Express Briefs. https://doi.org/10.1109/TCSII.2023.3242856
  22. Guo, J., Ding, B., Wang, Y. and Han, Y. (2023), "Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation", Physica Scripta, 98(12), 125218. https://doi.org/10.1088/1402-4896/ad07be
  23. Hou, X., Xin, L., Fu, Y., Na, Z., Gao, G., Liu, Y., Xu, Q., Zhao, P., Yan, G., Su, Y. and Cao, K. (2023a), "A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception", Nano Energy, 118, 109034. https://doi.org/10.1016/j.nanoen.2023.109034
  24. Hou, X., Zhang, L., Su, Y., Gao, G., Liu, Y., Na, Z., Xu, Q., Ding, T., Xiao, L., Li, L. and Chen, T. (2023b), "A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification", Nano Energy, 105, 108013. https://doi.org/10.1016/j.nanoen.2022.108013
  25. Hu, D., Li, Y., Yang, X., Liang, X., Zhang, K. and Liang, X. (2023), "Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning", Struct. Control Health Monitor., 2023, 3341788. https://doi.org/10.1155/2023/3341788
  26. Jang, J.-S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE Transact. Syst. Man Cybernet., 23(3), 665-685. https://doi.org/10.1109/21.256541
  27. Khan, D., Alonazi, M., Abdelhaq, M., Al Mudawi, N., Algarni, A., Jalal, A. and Liu, H. (2024), "Robust human locomotion and localization activity recognition over multisensory", Front. Physiol., 15. https://doi.org/10.3389/fphys.2024.1344887
  28. Li, D. (2022), "Machine Learning Based Preschool Education Quality Assessment System", Mobile Inform. Syst., 2022, 2862518. https://doi.org/10.1155/2022/2862518
  29. Li, X. and Sun, Y. (2021), "Application of RBF neural network optimal segmentation algorithm in credit rating", Neural Comput. Applicat., 33(14), 8227-8235. https://doi.org/10.1007/s00521-020-04958-9
  30. Li, D., Dai, X., Wang, J., Xu, Q., Wang, Y., Fu, T., Hafez, A. and Grant, J. (2022a), "Evaluation of College Students' Classroom Learning Effect Based on the Neural Network Algorithm", Mobile Inform. Syst., 2022, 7772620. https://doi.org/10.1155/2022/7772620
  31. Li, D., Hu, R. and Lin, Z. (2022b), "Vocational education platform based on block chain and IoT technology", Computat. Intell. Neurosci., 2022, 5856229. https://doi.org/10.1155/2022/5856229
  32. Li, K., Ji, L., Yang, S., Li, H. and Liao, X. (2022c), "Couple-group consensus of cooperative-competitive heterogeneous multiagent systems: A fully distributed event-triggered and pinning control method", IEEE Transact. Cybernet., 52(6), 4907-4915. https://doi.org/10.1109/TCYB.2020.3024551
  33. Li, X., Yu, H., Feng, H., Zhang, S. and Fu, Y. (2023), "Design and control for WLR-3P: a hydraulic wheel-legged robot", Cyborg Bionic Syst., 4, 25. https://doi.org/10.34133/cbsystems.0025
  34. Liang, J., Feng, J., Lu, Y., Yin, G., Zhuang, W. and Mao, X. (2024a), "A direct yaw moment control framework through robust TS fuzzy approach considering vehicle stability margin", IEEE/ASME Transact. Mechatron., 29(1), 166-178. https://doi.org/10.1109/TMECH.2023.3274689
  35. Liang, J., Lu, Y., Wang, F., Feng, J., Pi, D., Yin, G. and Li, Y. (2024b), "ETS-based human-machine robust shared control design considering the network delays", IEEE Transact. Automat. Sci. Eng. https://doi.org/10.1109/TASE.2024.3383094
  36. Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021a), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunnell. Undergr. Space Technol., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857
  37. Liu, Q., Yuan, H., Hamzaoui, R., Su, H., Hou, J. and Yang, H. (2021b), "Reduced reference perceptual quality model with application to rate control for video-based point cloud compression", IEEE Transact. Image Process, 30, 6623-6636. https://doi.org/10.1109/TIP.2021.3096060
  38. Liu, L., Zhang, S., Zhang, L., Pan, G. and Yu, J. (2022), "Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network", IEEE Transact. Cybernet., 53(6), 4015-4028. https://doi.org/10.1109/TCYB.2022.3225106
  39. Liu, F., Zhao, X., Zhu, Z., Zhai, Z. and Liu, Y. (2023), "Dual-microphone active noise cancellation paved with Doppler assimilation for TADS", Mech. Syst. Signal Process., 184, 109727. https://doi.org/10.1016/j.ymssp.2022.109727
  40. Liu, W.L., Zhong, J., Liang, P., Guo, J., Zhao, H. and Zhang, J. (2024), "Towards explainable traffic signal control for urban networks through genetic programming", Swarm Evolution. Computat., 88, 101588. https://doi.org/10.1016/j.swevo.2024.101588
  41. Lu, J., Liu, Y., Huang, W., Bi, K., Zhu, Y. and Fan, Q. (2022), "Robust control strategy of gradient magnetic drive for microrobots based on extended state observer", Cyborg Bionic Syst. https://doi.org/10.34133/2022/9835014
  42. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023), "Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck", Metals, 13(8), 1402. https://doi.org/10.3390/met13081402
  43. Lyu, T., Xu, H., Zhang, L. and Han, Z. (2024), "Source selection and resource allocation in wireless powered relay networks: an adaptive dynamic programming based approach", IEEE Internet Things J., 11(5), 8973-8988. https://doi.org/10.1109/JIOT.2023.3321673
  44. Ma, J. and Hu, J. (2022), "Safe consensus control of cooperative-competitive multi-agent systems via differential privacy", Kybernetika, 58(3), 426-439. https://doi.org/10.14736/kyb-2022-3-0426
  45. Peng, T.S., Zeng, H.B., Wang, W., Zhang, X.M. and Liu, X.G. (2023), "General and less conservative criteria on stability and stabilization of TS fuzzy systems with time-varying delay", IEEE Transact. Fuzzy Syst., 31(5), 1531-1541. https://doi.org/10.1109/TFUZZ.2022.3204899
  46. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  47. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., Int. J., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243
  48. She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AK-SS", Structures, 57, 105289. https://doi.org/10.1016/j.istruc.2023.105289
  49. Song, F., Liu, Y., Shen, D., Li, L. and Tan, J. (2022), "Learning control for motion coordination in wafer scanners: toward gain adaptation", IEEE Transact. Industr. Electron., 69(12), 13428-13438. https://doi.org/10.1109/TIE.2022.3142428
  50. Tian, J., Wang, B., Guo, R., Wang, Z., Cao, K. and Wang, X. (2022), "Adversarial attacks and defenses for deep-learning-based unmanned aerial vehicles", IEEE Internet Things J., 9(22), 22399-22409. https://doi.org/10.1109/JIOT.2021.3111024
  51. Wang, D., Wang, X.X., Jin, M.L., He, P. and Zhang, S. (2022a), "Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation", Nano Energy, 103, 107819. https://doi.org/10.1016/j.nanoen.2022.107819
  52. Wang, L., Meng, L., Kang, R., Liu, B., Gu, S., Zhang, Z., Meng, F. and Ming, A. (2022b), "Design and dynamic locomotion control of quadruped robot with perception-less terrain adaptation", Cyborg Bionic Syst. https://doi.org/10.34133/2022/9816495
  53. Wang, W., Zeng, H.B., Teo, K.L. and Chen, Y.J. (2023a), "Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices", J. Franklin Inst., 360(9), 6099-6109. doi: https://doi.org/10.1016/j.jfranklin.2023.04.019
  54. Wang, Y., Xu, J., Qiao, L., Zhang, Y. and Bai, J. (2023b), "Improved amplification factor transport transition model for transonic boundary layers", AIAA J., 61(9), 3866-3882. https://doi.org/10.2514/1.J062341
  55. Wang, R., Gu, Q., Lu, S., Tian, J., Yin, Z., Yin, L. and Zheng, W. (2024), "FI-NPI: Exploring Optimal Control in Parallel Platform Systems", Electronics, 13(7), p. 1168. https://doi.org/10.3390/electronics13071168
  56. Yang, M., Han, W., Song, Y., Wang, Y. and Yang, S. (2024), "Data-model fusion driven intelligent rapid response design of underwater gliders", Adv. Eng. Inform., 61, 102569. https://doi.org/10.1016/j.aei.2024.102569
  57. Yin, Y., Guo, Y., Su, Q. and Wang, Z. (2022), "Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning", Drones, 6(8), 215. https://doi.org/10.3390/drones6080215
  58. Yu, J., Dong, X., Li, Q., Lu, J. and Ren, Z. (2022), "Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems", IEEE Transactions on Circuits and Systems I: Regular Papers, 69(6), 2567-2578. https://doi.org/10.1109/TCSI.2022.3151464
  59. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439
  60. Zhang, C., Zhang, Y., Wang, W., Xi, N. and Liu, L. (2022a), "A manta ray-inspired biosyncretic robot with stable controllability by dynamic electric stimulation", Cyborg Bionic Syst. https://doi.org/10.34133/2022/9891380
  61. Zhang, J., Fang, Q., Xiang, P., Sun, D., Xue, Y., Jin, R., Qiu, K., Xiong, R., Wang, Y. and Lu, H. (2022b), "A survey on design, actuation, modeling, and control of continuum robot", Cyborg Bionic Syst. https://doi.org/10.34133/2022/9754697
  62. Zhang, Y., Li, S., Wang, S., Wang, X. and Duan, H. (2023), "Distributed bearing-based formation maneuver control of fixed-wing UAVs by finite-time orientation estimation", Aerosp. Sci. Technol., 136, 108241. https://doi.org/10.1016/j.ast.2023.108241
  63. Zhao, S., Liang, W., Wang, K., Ren, L., Qian, Z., Chen, G., Lu, X., Zhao, D., Wang, X. and Ren, L. (2024), "A multiaxial bionic ankle based on series elastic actuation with a parallel spring", IEEE Transact. Industr. Electron., 71(7), 7498-7510. https://doi.org/10.1109/TIE.2023.3310041
  64. Zheng, C., An, Y., Wang, Z., Wu, H., Qin, X., Eynard, B. and Zhang, Y. (2022), "Hybrid offline programming method for robotic welding systems", Robot. Comput.-Integr. Manuf., 73, p. 102238. https://doi.org/10.1016/j.rcim.2021.102238
  65. Zheng, C., An, Y., Wang, Z., Qin, X., Eynard, B., Bricogne, M., Le Duigou, J. and Zhang, Y. (2023a), "Knowledge-based engineering approach for defining robotic manufacturing system architectures", Int. J. Product. Res., 61(5), 1436-1454. https://doi.org/10.1080/00207543.2022.2037025
  66. Zheng, W., Gong, G., Tian, J., Lu, S., Wang, R., Yin, Z., Li, X. and Yin, L. (2023b), "Design of a modified transformer architecture based on relative position coding", Int. J. Computat. Intell. Syst., 16(1), 168. https://doi.org/10.1007/s44196-023-00345-z
  67. Zhou, Y., Song, Y., Zhao, S., Li, X., Shao, L., Yan, H., Xu, Z. and Ding, S. (2024), "A comprehensive aerodynamic-thermal-mechanical design method for fast response turbocharger applied in aviation piston engines", Propuls. Power Res. https://doi.org/10.1016/j.jppr.2024.04.001
  68. Zhu, S., Shen, W., Zhu, H.P. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., Int. J., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.3.449