References
- ACI 211 (2009), American Concrete Institute, Standard practice for selecting proportions for normal, heavyweight, and mass concrete: State of Michigan, USA.
- ASTM C 457 (2006), America Society for Testing and Materials, Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete: ANSI.
- ASTM C 94 (2020), ASTM International, Standard specification for ready-mixes concrete, American National Standards Institute: Commonwealth of Pennsylvania, USA.
- Bentz, D.P. and Turpin, R. (2007), "Potential applications of phase change materials in concrete technology", Cem. Concr. Res., 29, 527-532. https://doi.org/10.1016/j.cemconcomp.2007.04.007
- EN 206 (2013), European Standard, Concrete. Specification, performance, production and conformity, European Committee for Standardization: European Union.
- Farnam, Y., Wiese, A., Bentz, D., Davis, J. and Weiss, J. (2015), "Damage development in cementitious materials exposed to magnesium chloride deicing salt", Constr. Build. Mater., 93, 384-392. https://doi.org/10.1016/j.conbuildmat.2015.06.004
- Farnam, Y., Krafcik, M., Liston, L., Washington, R., Erk, K., Tao, B. and Weiss, J. (2016), "Evaluating the Use of Phase Change Materials in Concrete Pavement to Melt Ice and Snow", J. Mater. Civ. Eng., 28(4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001439
- Farnam, Y., Esmaeeli, H.S., Zavattieri, P.D., Haddock, J. and Weiss, J. (2017), "Incorporating phase change materials in concrete pavement to melt snow and ice", Cem. Concr. Res., 84, 134-145. https://doi.org/10.1016/j.cemconcomp.2017.09.002
- Hanjari, K.Z., Utgenannt, P. and Lundgren, K. (2011), "Experimental study of the material and bond properties of frost-damaged concrete", Cem. Concr. Res., 41, 244-254. https://doi.org/10.1016/j.cemconres.2010.11.007
- Hasegawa, S., Mitsuishi, N., Akahori, Y. and Nawa, T. (2006), "A Proposal of a Method for Measuring the Frozen Water Volume of Water in Cured Cement", Proc. Jpn. Concr. Inst., 28(1), 851-856. [In Japanese] https://data.jci-net.or.jp/data_pdf/28/028-01-1139.pdf
- Honda, D., Quy, N.X., Kim, J. and Hama, Y. (2021), "Influence of drying on frost resistance of mortar using a nitrite corrosion inhibitor and paraffin waterproofing agent", Constr. Build. Mater., 283, 1-16. https://doi.org/10.1016/j.conbuildmat.2021.122581
- JASS 5 (2018), Japanese Architectural Standard Specification, Japanese Architectural Standard Specification Reinforced Concrete Work: Japan.
- JGJ 55 (2011), Chinese National Standard, Specification for mix proportion design of ordinary concrete: China.
- JIS A 1101 (2020), Japanese Industrial Standards, Method to test for slump to concrete, Japanese Standards Association: Tokyo, Japan.
- JIS A 1108 (2018), Japanese Industrial Standards, Method to test for compressive strength of concrete, Japanese Standards Association: Tokyo, Japan
- JIS A 1123 (2022), Japanese Industrial Standards, Method to test for bleeding of concrete, Japanese Standards Association: Tokyo, Japan.
- JIS A 1128 (2020), Japanese Industrial Standards, Method to test for air content of fresh concrete by pressure method, Japanese Standards Association: Tokyo, Japan.
- JIS A 1148 (2010), Japanese Industrial Standards, Method to test for resistance of concrete to freezing and thawing, Japanese Standards Association: Tokyo, Japan.
- JIS A 5308 (2019), Japanese Industrial Standards, Ready-mixed concrete, Japanese Standards Association: Tokyo, Japan.
- JIS R 5201 (2015), Japanese Industrial Standards, Physical test methods for cement, Japanese Standards Association: Tokyo, Japan.
- KS F 4009 (2016), Korean Industrial Standards, Ready-mixed concrete, Korean Standards Association: Seoul, Korea.
- Kishimoto, G., Kim, J., Choi, H. and Hama, Y. (2018), "Influence of silicone oil on durability of portland blast furnace slag cement mortar", J. Adv. Concr. Technol., 16, 110-123. https://doi.org/10.3151/jact.16.110
- Li, W., Ling, C., Jiang, Z. and Yu, Q. (2019), "Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete", Constr. Build. Mater., 203, 621-632. https://doi.org/10.1016/j.conbuildmat.2019.01.098
- MLIT (2017), Ministry of Land, Infrastructure, Transport and Tourism, Reference materials on measures against freezing and thawing resistance in the Tohoku region (draft). [In Japanese]
- Muzenski, S., Flores-Vivian, I. and Sobolev, K. (2015), "Durability of superhydrophobic engineered cementitious composites", Constr. Build. Mater., 81, 291-297. https://doi.org/10.1016/j.conbuildmat.2015.02.014
- Nayak, S., Lyngdoh, G.A. and Das, S. (2019), "Influence of microencapsulated phase change materials (PCMs) on the chloride ion diffusivity of concretes exposed to Freeze-thaw cycles: Insights from multiscale numerical", Constr. Build. Mater., 212, 317-328. https://doi.org/10.1016/j.conbuildmat.2019.04.003
- Nishi, H. and Nawa, T. (2014a), "Property of the hydrophobic compound based drying shrinkage reducing agent which improved deterioration resistance by frost action", Trans. AIJ. J. Struct. Constr. Eng., 79(696), 191-200. [In Japanese] https://doi.org/10.3130/aijs.79.191
- Nishi, H. and Nawa, T. (2014b), "Study on frost damage degradation in hydrated cement using hydrophobic compound", Trans. AIJ. J. Struct. Constr. Eng., 79(696), 1415-1424. [In Japanese] https://doi.org/10.3130/aijs.79.1415
- Oyamada, T., Misosaku, T., Tkahasi, K. and Shiina, T. (2022), "Effects of Various Construction Processes on the Tunnel Lining Concrete Air and Its Frost Resistance", Proc. Jpn. Concr. Inst., 44(1), 526-531. [In Japanese]
- Pilehvar, S., Szczotok, A.M., Rodriguez, J.F., Valentini, L., Lanzon M., Pamies, R. and Kjoniksen, A.L. (2019), "Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials", Constr. Build. Mater., 200, 94-103. https://doi.org/10.1016/j.conbuildmat.2018.12.057
- Powers, T.C. (1945), "A Working Hypothesis for Further Studies of Frost Resistance of Concrete", J. Am. Concr. Inst., 16(4), 245-272. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/8684
- Qiao, C., Suraneni, P. and Weiss, J. (2018), "Damage in cement pastes exposed to NaCl solutions", Constr. Build. Mater., 171, 120-127. https://doi.org/10.1016/j.conbuildmat.2018.03.123
- Saichi, M., Shinohe, H. and Mihashi, H. (2002), "Quantification of internal cracks developed within frost-damaged concrete", Concr. Res. Technol., 13(1), 13-24. [In Japanese] https://doi.org/10.3151/crt1990.13.1_13
- Sakata, N., Sugamata, T., Hayashi, D. and Hashimoto, M. (2012), "Investigation for relationship between frost damage resistance and air-void system in concrete", Concr. Res. Technol., 23(1), 35-47. [In Japanese] https://doi.org/10.3151/crt.23.35
- Sun, W., Zhang, Y.M., Yan, H.D. and Mu, R. (1999), "Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles", Cem. Concr. Res., 29, 1519-1523. https://doi.org/10.1016/S0008-8846(99)00097-6
- Sun, W., Mu, R., Luo, X. and Miao, C. (2002), "Effect of chloride salt, freeze-thaw cycling and externally applied on the performance of the concrete", Cem. Concr. Res., 32, 1859-1864. https://doi.org/10.1016/S0008-8846(02)00769-X
- Tian, Y., Lai, Y., Pei, W., Qin, Z. and Li, H. (2022), "Study on the physical mechanical properties and freeze-thaw resistance of artificial phase change aggregates", Constr. Build. Mater., 329, 127-225. https://doi.org/10.1016/j.conbuildmat.2022.127225
- Wang, Y., Li, J., Ueda, T., Zhang, D. and Deng, J. (2021), "Mesoscale mechanical deterioration of mortar subjected to freeze thaw cycles and sodium chloride attack", Cem. Concr. Compos., 117. https://doi.org/10.1016/j.cemconcomp.2020.103906
- Wang, Y., Liu, Z., Zhang, B. and Fu, K. (2022), "A time-dependent diffusive model for the simulation of chloride penetration in concrete considering the effect of natural salt freeze-thaw cycles", Cold Regions Sci. Technol., 201. https://doi.org/10.1016/j.coldregions.2022.103622
- Wong, H.S., Pappas, A.M., Zimmerman, R.W. and Buenfeld, N.R. (2011), "Effect of entrained air voids on the microstructure and mass transport properties of concrete", Cem. Concr. Res., 41, 1067-1077. https://doi.org/10.1016/j.cemconres.2011.06.013
- Yeon, J.H. and Kim, K.K. (2018), "Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement", Constr. Build. Mater., 117, 202-209. https://doi.org/10.1016/j.conbuildmat.2018.05.113
- Zhou, J., Wang, G., Liu, P., Guo, X. and Xu, J. (2022), "Concrete Durability after Load Damage and Salt Freeze-Thaw Cycles", Mater., 15(13), 4380. https://doi.org/10.3390/ma15134380