DOI QR코드

DOI QR Code

입상 활성탄 및 표면 개질 활성탄의 장·단사슬 PFCA와 PFSA 흡착 특성

The characteristics of long- and short- chain PFCA and PFSA adsorption on granular activated carbon and surface-modified granular activated carbon

  • 신정우 (상명대학교 건설.환경.의생명공학과) ;
  • 최상기 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 안병렬 (상명대학교 건설시스템공학과)
  • Jeongwoo Shin (Department of Civil, Environmental, and Biomedical Engineering, Sangmyung University) ;
  • Sangki Choi (Water Quality Institue, Busan Water Authority) ;
  • Heejong Son (Water Quality Institue, Busan Water Authority) ;
  • Byungryul An (Department of Civil Engineering, Sangmyung University)
  • 투고 : 2024.05.20
  • 심사 : 2024.06.12
  • 발행 : 2024.08.15

초록

In this paper, the adsorption removal characteristic for 10 species of perfluoroalkyl and polyfluoroalkyl substances (PFAS) was investigated using GAC and modified GAC (GAC-Cu). After modification with Cu(II), the amount of copper was to 1.93 and 4.73 mg/g for GAC and GAC-Cu, respectively. The total amount of 10 species of PFAS per specific area was obtained to 0.548 and 0.612 ng/m2 for GAC and GAC-Cu, respectively. A series of batch test confirmed lower efficiency was observed with a smaller number of carbon chain length and the removal efficiency of PFCA (perfluoroalkyl carboxylic acids) was lower than that of PFSA (perfluoroalkyl sulfonic acids) with the same carbon chain length. Regarding the pH effect, the adsorption capacity was decreased with increase of pH due to the increase of electrostatic repulsion. According to pseudo first and second order (PFO and PSO) kinetic models, while the values of equilibrium uptake and time did not show significant difference, a difference in uptake was observed between 24-48h. Furthermore, based on correlation analysis, Log Kow and uptake have a high correlation with molecular weight (M.W.) and initial concentration, respectively. These results show that long-chain PFAS have higher removal efficiency due to their increased hydrophobicity.

키워드

과제정보

본 연구 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No.2022R1A2C1092752)와 환경부 및 한국환경산업기술원의 2024년도 녹색융합전문인력양성 지원사업을 통해 수행된 연구임.

참고문헌

  1. Ahn, S.K., Park, K.Y., Song, W.J., Park, Y.M., and Kweon, J.H. (2022). Adsorption mechanisms on perfluorooctanoic acid by FeCl3 modified granular activated carbon in aqueous solutions, Chemosphere, 303, 134965.
  2. Blanchard, G. Maunaye, M., and Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites, Water Res., 18, 1501-1507.
  3. Choi, S., Lee, W., Kim, Y.M., Hong, S.W., Son, H., and Lee, Y. (2021). A review on status of organic micropollutants from sewage effluent and their management strategies, J. Korean Soc. Water Wastewater, 35(3), 205-225.
  4. Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., and Yu, G. (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-A review, J. Hazard. Mater., 274, 443-454.
  5. Gao, X. and Chorover, J. (2012). Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy, Environ. Chem., 9(2), 148-157.
  6. Henning, K.D. and Schafer, S. (1993). Impregnated activated carbon for environmental protection, Gas Sep. Purif., 7(4), 235-240.
  7. Houde, M., De Silva, A. O., Muir, D. C., and Letcher, R. J. (2011). Monitoring of perfluorinated compounds in aquatic biota: an updated review: PFCs in aquatic biota, Environ. Sci. Technol., 45(19), 7962-7973.
  8. Kim, T. and An, B. (2021). Effect of hydrogen ion presence in adsorbent and solution to enhance phosphate adsorption, Appl. Sci., 11(6), 2777.
  9. Lagergren, S.K. (1898). About the theory of so-called adsorption of soluble substances, K. Vet. Akad. Handl., 24, 1-39.
  10. Lim, C., Kim, H., Han, G., Kim, H., Hwang, Y., and Kim, K. (2020). Behavior of perfluorinated compounds in advanced water treatment plant, J. Korean Soc. Water Wastewater, 34(5), 323-334.
  11. Lyu, X., Xiao, F., Shen, C., Chen, J., Park, C. M., Sun, Y., Flury, M., and Wang, D. (2022). Per and polyfluoroalkyl substances (PFAS) in subsurface environments: Occurrence, fate, transport, and research prospect, Rev. Geophys., 60(3), e2021RG000765.
  12. Magdy, Y.H. and Altaher, H. (2018). Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust, J. Environ. Chem. Eng., 6(1), 834-841.
  13. Mahmood, T., Saddique, M.T., Naeem, A., Westerhoff, P., Mustafa, S., and Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NiO, Ind. Eng. Chem. Res., 50(17), 10017-10023.
  14. NJDEP. (2018). Specific ground water quality criteria for 1,2,3-trichloropropane (TCP) and perfluorononanoic acid (PFNA). https://www.nj.gov/dep/rules/adminchg/20180904a.pdf.
  15. Nur, T., Loganathan, P., Ahmed, M.B., Johir, M.A.H., Nguyen, T.V., and Vigneswaran, S. (2019). Removing arsenic from water by coprecipitation with iron: Effect of arsenic and iron concentrations and adsorbent incorporation, Chemosphere, 226, 431-438.
  16. Park, K.H., Lee, C.H., Ryu, S.K., and Yang, X. (2007). Zeta-potentials of oxygen and nitrogen enriched activated carbons for removal of copper ion, Carbon lett., 8(4), 321-325.
  17. Pauletto, P.S. and Bandosz, T.J. (2022). Activated carbon versus metal-organic frameworks: a review of their PFAS adsorption performance, J. Hazard. Mater., 425, 127810.
  18. Shin, J. and An, B. (2023). The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior, J. Korean Soc. Water Wastewater, 37(4), 177-186.
  19. Shin, J. and An, B. (2024). Effect of ligand interactions within modified granular activated carbon (GAC) on mixed perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption. Chemosphere, 357, 142025.
  20. Shin, J., Kang, S., and An, B. (2021). Enhancement of phosphate removal using copper impregnated activated carbon (GAC-Cu), J. Korean Soc. Water Wastewater, 35(6), 455-463.
  21. Shivakoti, B.R., Fujii, S., Nozoe, M., Tanaka, S., and Kunacheva, C. (2010). Perfluorinated chemicals (PFCs) in water purification plants (WPPs) with advanced treatment processes, Water Sci. Technol. Water Supply, 10(1), 87-95.,
  22. Skutlarek, D., Exner, M., and Farber, H. (2006). Perfluorinated surfactants in surface and drinking waters, Environ. Sci. Pollut. Res., 13(5), 299.
  23. Son, H., Kim, T., Yoom, H.S., Zhao, D., and An, B. (2020). The adsorption selectivity of short and long per-and polyfluoroalkyl substances (PFASs) from surface water using powder-activated carbon, Water, 12(11), 3287.
  24. Umeh, A.C., Hassan, M., Egbuatu, M., Zeng, Z., Al Amin, M., Samarasinghe, C., and Naidu, R. (2023). Multicomponent PFAS sorption and desorption in common commercial adsorbents: kinetics, isotherm, adsorbent dose, pH, and index ion and ionic strength effects, Sci. Total Environ., 904, 166568.
  25. Xu, B., Liu, S., Zhou, J. L., Zheng, C., Weifeng, J., Chen, B., Zhang, T., and Qiu, W. (2021). PFAS and their substitutes in groundwater: Occurrence, transformation and remediation, J. Hazard. Mater., 412, 125159.