DOI QR코드

DOI QR Code

Effect of nonlinear soil-structure interaction on the seismic performance of 3D isolated transformers when scaling the response spectra using the improved wavelet method

  • Mohammad Mahmoudi (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Abbas Ghasemi (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Shahriar Tavousi Tafreshi (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University)
  • 투고 : 2023.12.13
  • 심사 : 2024.08.09
  • 발행 : 2024.09.10

초록

Electric transformers are major components of electrical systems, and damage to them caused by earthquakes can result in significant financial loss. The current study modeled a three-dimensional (3D) isolated electrical transformer under horizontal and vertical records from different earthquakes. Instead of using fixed coefficients, an improved wavelet method has been used to create the greatest compatibility between the response spectra and the target spectrum. This method has primarily been used for dynamic analysis of isolated structures with spring-damper devices because it has shown greater accuracy in predicting the response of such structures. The effect of the nonlinear soil-structure interaction on the probability of transformer failure also has been investigated. Soil and structure interaction modeling was carried out using a beam on a nonlinear Winkler foundation. The effect of the nonlinear soil-structure interaction during dynamic analysis of transformers revealed that the greatest increase in the probability of transformer failure was in the fixed-base condition when the structure was located on soft soil. This intensified the response of the structure and increased the probability of transformer failure by up to 27% for far-field and up to 95% for near-field ground motions. A comparison of the results indicates that the use of 3D isolation systems in transformers in areas with soft clay that are subject to near-field ground motions can strongly reduce the probability of failure and improve the seismic performance of the transformer.

키워드

참고문헌

  1. Akhoondi, M.R. and Behnamfar, F. (2021), "Seismic fragility curves of steel structures including soil-structure interaction and variation of soil parameters", Soil. Dyn. Earthq. Eng., 143, 106609. https://doi.org/10.1016/j.soildyn.2021.106609.
  2. Al Atik, L. and Abrahamson, N. (2010), "An improved method for nonstationary spectral matching", Earthq. Spectra., 26(3), 601-617. https://doi.org/10.1193/1.3459159.
  3. Arora, R. and Banerjee, S. (2023), "Reliability-based approach for fragility assessment of bridges under floods", Struct. Eng. Mech., 88(4), 311-322. https://doi.org/10.12989/sem.2023.88.4.311.
  4. ASCE Standard ASCE/SEI 7-22 (2022), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineer, Reston, VA, USA.
  5. Bao, Y., Hu, H. and Gan, G. (2023), "Seismic response analysis of slope reinforced by pile-anchor structures under near-fault pulse-like ground motions", Soil. Dyn. Earthq. Eng., 164, 107576. https://doi.org/10.1016/j.soildyn.2022.107576.
  6. Bozorgnia, Y., Abrahamson, N.A., Atik, L.A., Ancheta, T.D., Atkinson, G.M., Baker, J.W., ... & Youngs, R. (2014), "NGAWest2 research project", Earthq. Spectra., 30(3), 973-987. https://doi.org/10.1193/072113EQS209M.
  7. Brennan, A.L. and Koliou, M. (2021), "Probabilistic loss assessment of a seismic retrofit technique for medium- and high-voltage transformer bushing systems in high seismicity regions", Struct. Infrastr. Eng., 17(8), 1036-1045. https://doi.org/10.1080/15732479.2020.1785513.
  8. Cao, Y., Peng, P., Wang, H., Sun, J., Xiao, G. and Zuo, Z. (2023), "Development of an innovative three-dimensional vibration isolation bearing", Eng. Struct., 295, 116890. https://doi.org/10.1016/j.engstruct.2023.116890.
  9. Chor, S., Ingle, R. and Sawant, V. (2014), "Nonlinear soil structure interaction of space frame-pile foundation-soil system", Struct. Eng. Mech., 49(1), 95-110. https://doi.org/10.12989/sem.2014.49.1.095.
  10. Chun, N., Jeon, B., Kim, S., Chang, S. and Son, S. (2022), "Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests", Struct. Eng. Mech., 84(2), 155-165. https://doi.org/10.12989/sem.2022.84.2.155.
  11. Dadkhah, M., Kamgar, R. and Heidarzadeh, H. (2022), "Reducing the cost of calculations for incremental dynamic analysis of building structures using the discrete wavelet transform", J. Earthq. Eng., 26(7), 3317-3342. https://doi.org/10.1080/13632469.2020.1798830.
  12. El Hoseny, M., Ma, J., Dawoud, W. and Forcellini, D. (2023), "The role of soil structure interaction (SSI) on seismic response of tall buildings with variable embedded depths by experimental and numerical approaches", Soil. Dyn. Earthq. Eng., 164, 107583. https://doi.org/10.1016/j.soildyn.2022.107583.
  13. Fallahian, M., Ahmadi, E. and Khoshnoudian, F. (2022), "A structural damage detection algorithm based on discrete wavelet transform and ensemble pattern recognition models", J. Civil Struct. Hlth. Monit., 12(2), 323-338. https://doi.org/10.1007/s13349-021-00546-0.
  14. FEMA (2009), Quantification of Building Seismic Performance Factors, Report FEMA P695, Federal Emergency Management Agency,Washington, DC, USA.
  15. Fenz, D. and Constantinou, M. (2008), "Development, implementation, and verification of dynamic analysis models for multi-spherical sliding bearings", Technical Report MCEER-08-0018, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, USA.
  16. Gazetas, G. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363).
  17. Habib, A. and Yildirim, U. (2023), "Influence of isolator properties and earthquake characteristics on the seismic behavior of RC structure equipped with quintuple friction pendulum bearings", Int. J. Struct. Stab. Dyn., 23(06), 2350060. https://doi.org/10.1142/s0219455423500608.
  18. Hancock, J., Watson-Lamprey, J., Abrahamson, N.A., Bommer, J.J., Markatis, A., McCoy, E. and Mendis, R. (2006), "An improved method of matching response spectra of recorded earthquake ground motion using wavelets", J. Earthq. Eng., 10, 67-89. https://doi.org/10.1142/S1363246906002736.
  19. Harden, C.W. and Hutchinson, T.C. (2009), "Beam-on-nonlinearwinkler- foundation modeling of shallow, rocking-dominated footings", Earthq. Spectra, 25(2), 277-300. https://doi.org/10.1193/1.3110482.
  20. Hasanvand, H., Pourrostam, T., Sardroud, J. and Ramasht, M. (2023), "Comparison of support vector machines enabled wavelet algorithm, ANN and GP in construction of steel pallet rack beam to column connections: Experimental and numerical investigation", Struct. Eng. Mech., 87(1), 19-28. https://doi.org/10.12989/sem.2023.87.1.019.
  21. He, H., Chen, Y. and Lan, B. (2021), "Damage assessment for structure subjected to earthquake using wavelet packet decomposition and time-varying frequency", Struct., 34, 449-461. https://doi.org/10.1016/j.istruc.2021.07.087.
  22. Homaei, F. (2022), "Estimation of the inelastic displacement ratio for structures considering nonlinear soil-structure interaction", Bull. Earthq. Eng., 21(4), 2067-2102. https://doi.org/10.1007/s10518-022-01595-6.
  23. Huang, C. and Nagarajaiah, S. (2021), "Output only system identification using complex wavelet modified second order blind identification method-A time-frequency domain approach", Struct. Eng. Mech., 78(3), 369-378. https://doi.org/10.12989/sem.2021.78.3.369.
  24. Huang, Y.N., Whittaker, A.S. and Luco, N. (2008), "Maximum spectral demands in the near-fault region", Earthq. Spectra, 24(1), 319-341. https://doi.org/10.1193/1.2830435.
  25. IEEE Recommended Practice for Seismic Design of Substations (2019), IEEE Std 693-2018 (Revision of IEEE Std 693-2005); IEEE Power Engineering Society, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA.
  26. Kaloop, M., Son, H., Sim, H., Kim, D. and Hu, J. (2020), "Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses", Struct. Eng. Mech., 74(2), 201-214. https://doi.org/10.12989/sem.2020.74.2.201.
  27. Kazemi, F. and Jankowski, R. (2023), "Enhancing seismic performance of rigid and semi-rigid connections equipped with SMA bolts incorporating nonlinear soil-structure interaction", Eng. Struct., 274, 114896. https://doi.org/10.1016/j.engstruct.2022.114896.
  28. Kilic, S., Akbas, B., Shen, J. and Paolacci, F. (2022), "Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems", Struct. Eng. Mech., 83(5), 627-644. https://doi.org/10.12989/sem.2022.83.5.627.
  29. Kitayama, S., Lee, D., Constantinou, M.C. and Kempner Jr, L. (2017), "Probabilistic seismic assessment of seismically isolated electrical transformers considering vertical isolation and vertical ground motion", Eng. Struct., 152, 888-900. https://doi.org/10.1016/j.engstruct.2017.10.009.
  30. Kontoni, D.P. and Farghaly, A. (2019), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
  31. Lagaguine, M. and Sbartai, B. (2023), "Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis", Struct. Eng. Mech., 87(2), 173-189. https://doi.org/10.12989/sem.2023.87.2.173.
  32. Lee, D. and Constantinou, M.C. (2018), "Combined horizontalvertical seismic isolation system for high-voltage-power transformers: Development, testing and validation", Bull. Earthq. Eng., 16(9), 4273-4296. https://doi.org/10.1007/s10518-018-0311-2.
  33. Lilhanand, K. and Tseng, W.S. (1988), "Development and application of realistic earthquake time histories compatible with multiple damping response spectra", 9th World Conf. Earth. Engin., Tokyo, Japan, August.
  34. Li, J. and Xu, L.H. (2023), "Seismic response characteristics and whiplash effect mechanism of continuous rigid-frame bridges subjected to near-fault ground motions", Bull. Earthq. Eng., 21(7), 3719-3744. https://doi.org/10.1007/s10518-023-01672-4.
  35. Lv, H. and Chen, S. (2022), "Analysis of nonlinear soil-structure interaction using partitioned method", Soil. Dyn. Earthq. Eng., 162, 107470. https://doi.org/10.1016/j.soildyn.2022.107470.
  36. Ma, G.L., Xie, Q. and Whittaker, A. (2019), "Seismic performance assessment of an ultra-high-voltage power transformer", Earthq. Spectra, 35(1), 423-445. https://doi.org/10.1193/111217EQS234M.
  37. Mitropoulou, C., Kostopanagiotis, C., Kopanos, M., Ioakim, D. and Lagaros, N. (2016), "Influence of soil-structure interaction on fragility assessment of building structure", Struct., 6, 85-98. https://doi.org/10.1016/j.istruc.2016.02.005.
  38. McKenna, F.T. (1997), "Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing", Ph.D. Dissertation, University of California, Berkeley.
  39. McVitty, W.J. and Constantinou, M.C. (2015), "Property modification factors for seismic isolators: Design guidance for buildings", Technical Report, MCEER-15-0005, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, USA.
  40. Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2022), "Determination of optimal behavior of self-centering multiplerocking walls subjected to far-field and near-field ground motions", J. Build. Eng., 45, 103509. https://doi.org/10.1016/j.jobe.2021.103509.
  41. Mortezaie, H. and Zamanian, R. (2021), "Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD", Struct. Eng. Mech., 77(6), 721-734. https://doi.org/10.12989/sem.2021.77.6.721.
  42. Oikonomou, K., Constantinou, M.C., Reinhorn, A.M. and Kempner Jr, L. (2016), "Seismic isolation of high voltage electrical power transformers", MCEER-16-0006, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, USA.
  43. Raychowdhury, P. and Hutchinson, T. (2009), "Performance evaluation of a nonlinear Winkler-based shallow foundation model using centrifuge test results", Earthq. Eng. Struct. Dyn., 38(5), 679-698. https://doi.org/10.1002/eqe.902.
  44. Reinhorn, A.M., Oikonomou, K., Roh, H., Schiff, A. and Kempner Jr, L. (2011), "Modeling and seismic performance evaluation of high voltage transformers and bushings", MCEER-11-0006, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, USA.
  45. Seo, J. and Shukla, R. (2016), "Joint seismic and scour fragility assessment of a steel building incorporating soil-structure interaction", Geotechnical and Structural Engineering Congress, Arizona, USA, February.
  46. Silik, A., Noori, M., Ghiasi, R., Wang, T., Kuok, S.C., Farhan, N.S.D., Dang, J., Wu, Z. and Altabey, W.A. (2023), "Dynamic wavelet neural network model for damage features extraction and patterns recognition", J. Civil Struct. Hlth. Monit., 13(4), 925-945. https://doi.org/10.1007/s13349-023-00683-8.
  47. Somerville, P.G. (2003), "Magnitude scaling of the near fault rupture directivity pulse", Phys. Earth. Planet. Interior., 137(1-4), 201-212. https://doi.org/10.1016/S0031-9201(03)00015-3.
  48. Suarez, L.E. and Montejo, L.A. (2005), "Generation of artificial earthquakes via the wavelet transform", Int. J. Solid. Struct., 42, 5905-5919. https://doi.org/10.1016/j.ijsolstr.2005.03.025.
  49. Tarantola, A. (2005), "Inverse problem theory and methods for model parameter estimation", Society for Industrial and Applies Mathematics, Philadelphia, USA.
  50. Taslimi, A. and Tehranizadeh, M. (2021), "The effect of vertical near-field ground motions on the collapse risk of high-rise reinforced concrete frame-core wall structures", Adv. Struct. Eng., 25(2), 410-425. https://doi.org/10.1177/13694332211056106.
  51. Ulusoy, S., Bekdas, G. and Nigdeli, S. (2020), "Active structural control via metaheuristic algorithms considering soil-structure interaction", Struct. Eng. Mech., 75(2), 175-191. https://doi.org/10.12989/sem.2020.75.2.175.
  52. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
  53. Wang, M. and He, J. (2023), "Shake table test and finite element model for evaluating seismic performance of 220 kV transformer-bushing systems", Earthq. Spectra, 39(3), 1755-1778. https://doi.org/10.1177/87552930231177089.
  54. Wei, B., Wan, K., Wang, W., Hu, Z., Jiang, L. and Li, S. (2023), "Seismic isolation effect of a new type of friction pendulum bearing in high-speed railway girder bridge", Struct., 51, 776-790. https://doi.org/10.1016/j.istruc.2023.03.077.
  55. Wen, J., Li, X. and Xie, Q. (2022), "Cost-effectiveness of base isolation for large transformers in areas of high seismic intensity", Struct. Infrastr. Eng., 18(6), 745-759. https://doi.org/10.1080/15732479.2020.1864413.
  56. Yazdanpanah, O., Dolatshahi, K.M. and Moammer, O. (2023), "Rapid seismic fragility curves assessment of eccentrically braced frames through an output-only nonmodel-based procedure and machine learning techniques", Eng. Struct., 278, 115290. https://doi.org/10.1016/j.engstruct.2022.115290.
  57. Yesilyurt, A., Cetindemir, O., Akcan, S. and Zulfikar, A. (2023), "fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region", Struct. Eng. Mech., 88(1), 13-23. https://doi.org/10.12989/sem.2023.88.1.013.
  58. Zhang, J. and Jia, J. (2023), "Research on the Seismic isolation effect of the ring spring-friction pendulum bearing in the Dakai underground subway station", Appl. Sci., 13(12), 7093. https://doi.org/10.3390/app13127093.
  59. Zhang, Y., Ouyang, X., Sun, B., Shi, Y. and Wang, Z. (2022), "A comparative study on seismic fragility analysis of RC frame structures with consideration of modeling uncertainty under farfield and near-field ground motion excitation", Bull. Earthq. Eng., 20(3), 1455-1487. https://doi.org/10.1007/s10518-021-01254-2.
  60. Zhidong, G., Xu, Z., Mi, Z., Xiuli, D., Junjie, W. and Pengcheng, L. (2021), "Efficient seismic analysis for nonlinear soilstructure interaction with a thick soil layer", Earthq. Eng. Eng. Vib., 20(3), 553-565. https://doi.org/10.1007/s11803-021-2038-3.