참고문헌
- Ahmad, M., Aftab, S., Bashir, M. S., and Hameed, N. (2018). Sentiment analysis using SVM: A systematic literature review. International Journal of Advanced Computer Science and Applications, 9(2), 182-188. https://doi.org/10.14569/IJACSA.2018.090226
- Ahuja, R., Chug, A., Kohli, S., Gupta, S., and Ahuja, P. (2019). The impact of features extraction on the sentiment analysis. Procedia Computer Science, 152, 341-348. https://doi.org/10.1016/j.procs.2019.05.008
- Aladwani, A. M., and Dwivedi, Y. K. (2018). Towards a theory of SocioCitizenry: Quality anticipation, trust configuration, and approved adaptation of governmental social media. International Journal of Information Management, 43(March), 261-272. https://doi.org/10.1016/j.ijinfomgt.2018.08.009
- Aljedaani, W., Rustam, F., Mkaouer, M. W., Ghallab, A., Rupapara, V., Washington, P. B., Lee, E., and Ashraf, I. (2022). Sentiment analysis on Twitter data integrating TextBlob and deep learning models: The case of US airline industry. Knowledge-Based Systems, 255, 109780. https://doi.org/10.1016/j.knosys.2022.109780
- Altig, D., Baker, S., Barrero, J. M., Bloom, N., Bunn, P., Chen, S., Davis, S. J., Leather, J., Meyer, B., Mihaylov, E., Mizen, P., Parker, N., Renault, T., Smietanka, P., and Thwaites, G. (2020). Economic uncertainty before and during the COVID-19 pandemic. Journal of Public Economics, 191, 104274. https://doi.org/10.1016/j.jpubeco.2020.104274
- Ardianti, R., and Lestari, W. D. (2023). Government policy regarding coal and nickel export ban the impact on the indonesian mining industry. International Journal of Accounting, Management and Economic Research (IJAMER), 1(1), 23-33. https://doi.org/10.56696/ijamer.v1i1.5
- Blazquez, D., and Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99-113. https://doi.org/10.1016/j.techfore.2017.07.027
- Boon-Itt, S., and Skunkan, Y. (2020). Public perception of the COVID-19 pandemic on Twitter: Sentiment analysis and topic modeling study. JMIR Public Health Surveill, 6(4), e21978. https://doi.org/10.2196/21978
- Cahyani, D. E., and Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780-2788. https://doi.org/10.11591/eei.v10i5.3157
- Carracedo, P., Puertas, R., and Marti, L. (2021). Research lines on the impact of the COVID-19 pandemic on business. A text mining analysis. Journal of Business Research, 132, 586-593. https://doi.org/10.1016/j.jbusres.2020.11.043
- Chen, L. C., Lee, C. M., and Chen, M. Y. (2020). Exploration of social media for sentiment analysis using deep learning. Soft Computing, 24(11), 8187-8197. https://doi.org/10.1007/s00500-019-04402-8
- Chory, R. N., Nasrun, M., and Setianingsih, C. (2019). Sentiment analysis on user satisfaction level of mobile data services using Support Vector Machine (SVM) algorithm. In Proceedings - 2018 IEEE International Conference on Internet of Things and Intelligence System, IOTAIS 2018 (pp. 194-200). https://doi.org/10.1109/IOTAIS.2018.8600884
- Day, M. Y., and Lin, Y. Da. (2017). Deep learning for sentiment analysis on google play consumer review. In Proceedings - 2017 IEEE International Conference on Information Reuse and Integration, IRI 2017, 2017-Janua (pp. 382-388). https://doi.org/10.1109/IRI.2017.79
- Day, M. Y., and Teng, H. C. (2017). A study of deep learning to sentiment analysis on word of mouth of smart bracelet. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017 (pp. 763-770). https://doi.org/10.1145/3110025.3110129
- Devika, M. D., Sunitha, C., and Ganesh, A. (2016). Sentiment analysis: A comparative study on different approaches. Procedia Computer Science, 87, 44-49. https://doi.org/10.1016/j.procs.2016.05.124
- Duncombe, C. (2017). Twitter and transformative diplomacy: Social media and Iran-US relations. International Affairs, 93(3), 545-562. https://doi.org/10.1093/ia/iix048
- Duncombe, C. (2019). The politics of Twitter: Emotions and the power of social media. International Political Sociology, 13(4), 409-429. https://doi.org/10.1093/ips/olz013
- Elgendy, N., and Elragal, A. (2016). Big data analytics in support of the decision making process. In Procedia Computer Science, 100, 1071-1084. https://doi.org/10.1016/j.procs.2016.09.251
- Georgiadou, E., Angelopoulos, S., and Drake, H. (2020). Big data analytics and international negotiations: Sentiment analysis of Brexit negotiating outcomes. International Journal of Information Management, 51(November 2019). https://doi.org/10.1016/j.ijinfomgt.2019.102048
- Graham, T., Jackson, D., and Broersma, M. (2014). New platform, old habits? Candidates' use of Twitter during the 2010 British and Dutch general election campaigns. New Media and Society, 18(5). https://doi.org/10.1177/1461444814546728
- Grcar, M., Cherepnalkoski, D., Mozetic, I., and Kralj Novak, P. (2017). Stance and influence of Twitter users regarding the Brexit referendum. Computational Social Networks, 4(1). https://doi.org/10.1186/s40649-017-0042-6
- Grover, P., Kar, A. K., Dwivedi, Y. K., and Janssen, M. (2019). Polarization and acculturation in US Election 2016 outcomes - Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438-460. https://doi.org/10.1016/j.techfore.2018.09.009
- Grubmuller, V., Gotsch, K., and Krieger, B. (2013). Social media analytics for future oriented policy making. European Journal of Futures Research, 1(20), 1-9. https://doi.org/10.1007/s40309-013-0020-7
- Guerrero-Sole, F. (2018). Interactive behavior in political discussions on Twitter: Politicians, media, and citizens' patterns of interaction in the 2015 and 2016 electoral campaigns in Spain. Social Media and Society, 4(4). https://doi.org/10.1177/2056305118808776
- Hall, W., Tinati, R., and Jennings, W. (2018). From brexit to trump: Social media's role in democracy. Computer, 51(1), 18-27. https://doi.org/10.1109/MC.2018.1151005
- Han, K. X., Chien, W., Chiu, C. C., and Cheng, Y. T. (2020). Application of support vector machine (SVM) in the sentiment analysis of twitter dataset. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031125
- Hurlimann, M., Davis, B., Cortis, K., Freitas, A., and Fernandez, S. (2016). A Twitter Sentiment Gold Standard for the Brexit Referendum. In SEMANTiCS 2016: Proceedings of the 12th International Conference on Semantic Systems. https://doi.org/10.1145/2993318.2993350
- Imran, A. S., Daudpota, S. M., Kastrati, Z., and Batra, R. (2020). Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on covid-19 related tweets. IEEE Access, 8, 181074-181090. https://doi.org/10.1109/ACCESS.2020.3027350
- International Labour Organization. (2022). A Just Energy Transition in Southeast Asia: The Impacts of Coal Phase-Out on Jobs. International Labour Organization.
- International Nickel Study Group. (2021). The World Nickel Factbook 2021. Retrieved from https://insg.org/wp-content/uploads/2022/02/publist_The-World-Nickel-Factbook-2021.pdf
- Kadhim, A. I. (2019). Term weighting for feature extraction on Twitter: A comparison between BM25 and TF-IDF. In 2019 International Conference on Advanced Science and Engineering, ICOASE 2019 (pp. 124-128). https://doi.org/10.1109/ICOASE.2019.8723825
- Krustiyati, A., and Christine, N. (2022). Analyzing the lawsuit of the European Union over nickel ore export regulation in Indonesia. Croatian International Relations Review, XXVIII(89), 121-135. https://doi.org/10.2478/CIRR-2022-0007
- Kurniawan, A. R., Murayama, T., and Nishikizawa, S. (2021). Appraising affected community perceptions of implementing programs listed in the environmental impact statement: A case study of Nickel smelter in Indonesia. The Extractive Industries and Society, 8(1), 363-373. https://doi.org/10.1016/j.exis.2020.11.015
- Leelawat, N., Jariyapongpaiboon, S., Promjun, A., and Boonyarak, S. (2022). Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning. Heliyon, 8(June). https://doi.org/10.1016/j.heliyon.2022.e10894
- Lim, B., Kim, H. S., and Park, J. (2021). Implicit interpretation of Indonesian export bans on LME nickel prices: Evidence from the announcement effect. Risks, 9(93). https://doi.org/10.3390/risks9050093
- Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan and Claypool Publishers.
- Lyu, Z., and Takikawa, H. (2022). Media framing and expression of anti-China sentiment in COVID-19-related news discourse: An analysis using deep learning methods. Heliyon, 8(8), e10419. https://doi.org/10.1016/j.heliyon.2022.e10419
- Ma, Y., Wang, M., and Li, X. (2022). Analysis of the characteristics and stability of the global complex nickel ore trade network. Resources Policy, 79, 103089. https://doi.org/10.1016/j.resourpol.2022.103089
- Medhat, W., Hassan, A., and Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. https://doi.org/10.1016/j.asej.2014.04.011
- Mohammed, S. H., and Al-Augby, S. (2020). LSA and LDA topic modeling classification: Comparison study on E-books. Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 353-362. https://doi.org/10.11591/ijeecs.v19.i1.pp353-362
- Mourya, A. K., ShafqatUlAhsaan, and Kaur, H. (2020). Performance and evaluation of different kernels in support vector machine for text mining. In M. N. Mohanty and S. Das (Eds.), Advances in Intelligent Computing and Communication (pp. 264-271). Springer Singapore.
- Naing, H. W., Thwe, P., Mon, A. C., and Naw, N. (2019). Analyzing sentiment level of social media data based on SVM and Naive Bayes algorithms. Advances in Intelligent Systems and Computing, 744, 68-76. https://doi.org/10.1007/978-981-13-0869-7_8
- Naseem, U., Razzak, I., Khushi, M., Eklund, P. W., and Kim, J. (2021). COVIDSenti: A large-scale benchmark Twitter data set for COVID-19 sentiment analysis. IEEE Transactions on Computational Social Systems, 8(4), 1003-1015. https://doi.org/10.1109/TCSS.2021.3051189
- Naw, N., and Mon, A. C. (2018). Social media data analysis in sentiment level by using support vector machine. Journal of Pharmacognosy and Phytochemistry, 7(1S), 609-613.
- Nemes, L., and Kiss, A. (2021). Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 5(1), 1-15. https://doi.org/10.1080/24751839.2020.1790793
- Neogi, A. S., Garg, K. A., Mishra, R. K., and Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers' protest using twitter data. International Journal of Information Management Data Insights, 1(2). https://doi.org/10.1016/j.jjimei.2021.100019
- Nguyen, N. H., Nguyen, D. T. A., Ma, B., and Hu, J. (2022). The application of machine learning and deep learning in sport: predicting NBA players' performance and popularity. Journal of Information and Telecommunication, 6(2), 217-235. https://doi.org/10.1080/24751839.2021.1977066
- Pandyaswargo, A. H., Wibowo, A. D., Maghfiroh, M. F. N., Rezqita, A., and Onoda, H. (2021). The emerging electric vehicle and battery industry in Indonesia: Actions around the nickel ore export ban and a SWOT analysis. Batteries, 7(80). https://doi.org/10.3390/batteries7040080
- Pasupa, K., and Seneewong Na Ayutthaya, T. (2019). Thai sentiment analysis with deep learning techniques: A comparative study based on word embedding, POS-tag, and sentic features. Sustainable Cities and Society, 50(December 2018), 101615. https://doi.org/10.1016/j.scs.2019.101615
- Prastyo, P. H., Sumi, A. S., Dian, A. W., and Permanasari, A. E. (2020). Tweets responding to the indonesian government's handling of COVID-19: Sentiment analysis using SVM with normalized poly kernel. Journal of Information Systems Engineering and Business Intelligence, 6(2), 112. https://doi.org/10.20473/jisebi.6.2.112-122
- Pratama, B., Saputra, D. D., Novianti, D., and Purnamasari, E. P. (2019). Sentiment analysis of the Indonesian police mobile brigade corps based on Twitter posts using the SVM and NB methods. Journal of Physics: Conference Series, 1201. https://doi.org/10.1088/1742-6596/1201/1/012038
- Prentice, C., Chen, J., and Stantic, B. (2020). Timed intervention in COVID-19 and panic buying. Journal of Retailing and Consumer Services, 57, 102203. https://doi.org/10.1016/j.jretconser.2020.102203
- Rahardi, M., Aminuddin, A., Abdulloh, F. F., and Nugroho, R. A. (2022). Sentiment analysis of Covid-19 vaccination using support vector machine in Indonesia. International Journal of Advanced Computer Science and Applications, 13(6), 534-539. https://doi.org/10.14569/IJACSA.2022.0130665
- Rahat, A. M., Kahir, A., and Masum, A. K. M. (2019). Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset. In Proceedings of the 2019 8th International Conference on System Modeling and Advancement in Research Trends, SMART 2019 (pp. 266-270). https://doi.org/10.1109/SMART46866.2019.9117512
- Razali, N. A. M., Malizan, N. A., Hasbullah, N. A., Wook, M., Zainuddin, N. M., Ishak, K. K., Ramli, S., and Sukardi, S. (2021). Opinion mining for national security: Techniques, domain applications, challenges and research opportunities. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00536-5
- Soelistijo, U. W. (2013). Prospect of potential nickel added value development in Indonesia. Earth Science, 2(6), 129-138. https://doi.org/10.11648/j.earth.20130206.13
- Sontayasara, T., Jariyapongpaiboon, S., Promjun, A., Seelpipat, N., Saengtabtim, K., Tang, J., and Leelawat, N. (2021). Twitter sentiment analysis of bangkok tourism during covid-19 pandemic using support vector machine algorithm. Journal of Disaster Research, 16(1), 24-30. https://doi.org/10.20965/jdr.2021.p0024
- Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from tree-structured long short-Term memory networks. ACL-IJCNLP 2015 - 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Proceedings of the Conference, 1, 1556-1566. https://doi.org/10.3115/v1/p15-1150
- U.S. Geological Survey. (2022). Mineral Commodity Summaries 2022. U.S. Geological Survey, Retrieved from https://doi.org/10.3133/mcs2022
- Vijay, and Verma, P. (2022). Extremism detection on social media using SVM text classifier. Journal of Pharmaceutical Negative Results, 13(7), 3748-3753. https://doi.org/10.47750/pnr.2022.13.S07.477
- Wankhade, M., Rao, A. C. S., and Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7). Springer Netherlands. https://doi.org/10.1007/s10462-022-10144-1
- Widiatedja, I. G. N. P. (2021). Indonesia's export ban on nickel ore: Does it violate the World Trade Organization (WTO) rules? Journal of World Trade, 667-696. http://www.kluwerlawonline.com/api/Product/CitationPDFURL?file=Journals%5CTRAD%5CTRAD2021028.pdf 1028.pdf