References
- 김준석, 이강복, 황회선, 안지수, 오정림, 장명훈, 전홍배, "DTW 기반 추진 전동기 잔여수명 예측 알고리즘 개발 사례연구", 한국CDE학회논문집, 제26권, 제4호, 2021, pp. 386-397. https://doi.org/10.7315/CDE.2021.386
- 송세리, 박상철, "LCD 검사 공정에서 가상계측을 위한 머신 러닝 기반 예측 모델", 한국CDE학회논문집, 제24권, 제3호, 2019, pp. 329-338. https://doi.org/10.7315/CDE.2019.329
- 이상우, 김병희, 서영호, "계단응답 데이터 전처리 방식에 따른 머신러닝 기반 화학물질분류 시스템의 분류특성평가", 한국정밀공학회학술발표대회논문집, 2021, pp. 416-416.
- 이환철, 허선, "효과적인 시계열 데이터 분류를 위한 동적시간왜곡 기반의 시계열 길이 변환", 대한산업공학회지, 제46권, 제4호, 2020, pp. 356-364. https://doi.org/10.7232/JKIIE.2020.46.4.356
- 장민석, 공성배, 고락경, 정주영, 주성관, "Dynamic Time Warping(DTW)기법을 이용한 가전기기별 부하 패턴 분류 기초연구", 대한전기학회학술대회논문집, 제2015권, 제7호, 2015, pp. 45-46.
- 한정석, 김형근, "반도체 공정에서 가상계측 위한 XGBoost 기반 예측모델", 한국정보처리학회 학술대회논문집, 제29권, 제1호, 2022, pp. 477-480.
- Ahn, G. S., H. C. Lee, and S. Hur, "Feature selection method for multivariate time series data classification", Journal of the Korean Institute of Industrial Engineers, Vol.43, No.6, 2017, pp. 413-421. https://doi.org/10.7232/JKIIE.2017.43.6.413
- Cover, T. and P. Hart, "Nearest neighbor pattern classification", IEEE Transactions on Information Theory, Vol.13, No.1, 1967, pp. 21-27. https://doi.org/10.1109/TIT.1967.1053964
- Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, Geoffrey, I. Webb, L. Idoumghar, P. Muller, and F. Petitjean, "Inceptiontime: Finding alexnet for time series classification", Data Mining and Knowledge Discovery, Vol.34, No.6, 2020, pp. 1936-1962. https://doi.org/10.1007/s10618-020-00710-y
- Jeong, Y. S., M. K. Jeong, and O. A. Omitaomu, "Weighted dynamic time warping for time series classification", Pattern Recognition, Vol.44, No.9, 2011, pp. 2231-2240. https://doi.org/10.1016/j.patcog.2010.09.022
- Jung, S. H., G. J. Gu, D. Kim, and J. W. Kim, "Predicting stock prices based on online news content and technical indicators by combinatorial analysis using CNN and LSTM with self-attention", Asia Pacific Journal of Information Systems, Vol.30, No.4, 2020, pp. 719-740. https://doi.org/10.14329/apjis.2020.30.4.719
- KAIST(ABH, Impix), AI Dataset for Process Operation Optimization, KAMP(Korea AI Manufacturing Platform), Korea, 2022, Available at https://www.kamp-ai.kr/.
- Lora, A. T., J. C. Riquelme, J. L. M. Ramos, J. M. R. Santos, and A. G. Exposito, "Influence of kNN-Based load forecasting errors on optimal energy production", Progress in Artificial Intelligence, Vol.2902, 2003, pp. 189-203.
- Lora, A. T., J. M. R. Santos, A. G. Exposito, J. L. M. Ramos, and J. C. R. Santos, "Electricity market price forecasting based on weighted nearest neighbors techniques", IEEE Transactions on Power Systems, Vol.22, No.3, 2007, pp. 1294-1301. https://doi.org/10.1109/TPWRS.2007.901670
- Oh, C., S. Han, and J. Jeong, "Time-series data augmentation based on interpolation", Procedia Computer Science, Vol.175, 2020, pp. 64-71. https://doi.org/10.1016/j.procs.2020.07.012
- Smirnov, D. and E. M. Nguifo, "Time series classification with recurrent neural networks", Advanced Analytics and Learning on Temporal Data, Vol.8, 2018.
- Vintsyuk, T. K., "Speech discrimination by dynamic programming", Cybern Syst Anal, Vol.4, 1968, pp. 52-57. https://doi.org/10.1007/BF01074755
- Wenninger, M., S. P. Bayerl, J. Schmidt, and K. Riedhammer, "Timage-A robust time series classification pipeline", International Conference on Artificial Neural Networks, 2019, pp. 450-61.
- Yang, C. L., Z. X. Chen, and C. Y. Yang, "Sensor classification using convolutional neural network by encoding multivariate time series as two-dimensional colored images", Sensors, Vol.20, No.1, 2019, p. 168.