DOI QR코드

DOI QR Code

An Efficient Sulfuric Acid- and Hydrazine-based Process for Recycling Wastewater Generated From U(VI)-Contaminated Soil-Washing

  • 투고 : 2024.03.26
  • 심사 : 2024.06.11
  • 발행 : 2024.06.30

초록

This study aimed to develop an efficient recycling process for wastewater generated from soil-washing used to remediate uranium (U(VI))-contaminated soil. Under acidic conditions, U(VI) ions leached from the soil were precipitated and separated through neutralization using hydrazine (N2H4). N2H4, employed as a pH adjuster, was decomposed into nitrogen gas (N2), water (H2O), and hydrogen ions (H+) by hydrogen peroxide (H2O2). The residual N2H4 was precipitated when the pH was adjusted using sulfuric acid (H2SO4) to recycle the wastewater in the soil-washing process. This purified wastewater was reused in the soil-washing process for a total of ten cycles. The results confirmed that the soil-washing performance for U(VI)-contaminated soil was maintained when using recycled wastewater. All in all, this study proposes an efficient recycling process for wastewater generated during the remediation of U(VI)-contaminated soil.

키워드

과제정보

This work was supported by a research grant from the Korea Atomic Energy Research Institute (KAERI) [Grant No. 522230-24, Republic of Korea].

참고문헌

  1. A. Razmjoo, L.G. Kaigutha, M.A.V. Rad, M. Marzband, A. Davarpanah, and M. Denai, "A Technical Analysis Investigating Energy Sustainability Utilizing Reliable Renewable Energy Sources to Reduce CO2 Emissions in a High Potential Area", Renew. Energy, 164, 46-57 (2021). https://doi.org/10.1016/j.renene.2020.09.042
  2. K.O. Yoro and M.O. Daramola, "CO2 Emission Sources, Greenhouse Gases, and the Global Warming Effect", in: Advances in Carbon Capture, M.R. Rahimpour and M. Farsi, eds., 1st ed., 3-28, Woodherad Publishing, Sawston, UK (2020).
  3. C. Graves, S.D. Ebbesen, M. Mogensen, and K.S. Lackner, "Sustainable Hydrocarbon Fuels by Recycling CO2 and H2O With Renewable or Nuclear Energy", Renew. Sustain. Energy Rev., 15(1), 1-23 (2011). https://doi.org/10.1016/j.rser.2010.07.014
  4. G.E. Halkos and E.C. Gkampoura, "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources", Energies, 13(11), 2906 (2020).
  5. Y. Lu, Z.A. Khan, M.S. Alvarez-Alvarado, Y. Zhang, Z. Huang, and M. Imran, "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources", Sustainability, 12(12), 5078 (2020).
  6. C. Pelletier, Y. Rogaume, L. Dieckhoff, G. Bardeau, M.N. Pons, and A. Dufour, "Effect of Combustion Technology and Biogenic CO2 Impact Factor on Global Warming Potential of Wood-to-Heat Chains", Appl. Energy, 235, 1381-1388 (2019). https://doi.org/10.1016/j.apenergy.2018.11.060
  7. C. Tortajada, "Contributions of Recycled Wastewater to Clean Water and Sanitation Sustainable Development Goals", NPJ Clean Water, 3(1), 22 (2020).
  8. M.D. Mathew, "Nuclear Energy: A Pathway Towards Mitigation of Global Warming", Prog. Nucl. Energy, 143, 104080 (2022).
  9. M. Usman and M. Radulescu, "Examining the Role of Nuclear and Renewable Energy in Reducing Carbon Footprint: Does the Role of Technological Innovation Really Create Some Difference?", Sci. Total Environ., 841, 156662 (2022).
  10. S.Z. Zhiznin, V.M. Timokhov, and A.L. Gusev, "Economic Aspects of Nuclear and Hydrogen Energy in the World and Russia", Int. J. Hydrog. Energy, 45(56), 31353-31366 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.260
  11. P. Bangotra, M. Sharma, R. Mehra, R. Jakhu, A. Singh, A.S. Gautam, and S. Gautam, "A Systematic Study of Uranium Retention in Human Organs and Quantification of Radiological and Chemical Doses From Uranium Ingestion", Environ. Technol. Inno., 21, 101360 (2021).
  12. R. Selvakumar, G. Ramadoss, M.P. Menon, K. Rajendran, P. Thavamani, R. Naidu, and M. Megharaj, "Challenges and Complexities in Remediation of Uranium Contaminated Soils: A Review", J. Environ. Radioact., 192, 592-603 (2018). https://doi.org/10.1016/j.jenvrad.2018.02.018
  13. M. Dulama, M. Iordache, and N. Deneanu, "Treatment of Uranium Contaminated Wastewater-A Review", Proc. of Nuclear 2013 the 6th Annual Internationl Conference on Sustainable Development Through Nuclear Research and Education, 80-87, May 22-24, 2013, Rumania.
  14. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, and X. Wang, "Metal-Organic Framework-based Materials: Superior Adsorbents for the Capture of Toxic and Radioactive Metal Ions", Chem. Soc. Rev., 47(7), 2322-2356 (2018). https://doi.org/10.1039/C7CS00543A
  15. G. Dermont, M. Bergeron, G. Mercier, and M. Richer-Lafleche, "Soil Washing for Metal Removal: A Review of Physical/Chemical Technologies and Field Applications", J. Hazard. Mater., 152(1), 1-31 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.043
  16. R. Mahinroosta and L. Senevirathna, "A Review of the Emerging Treatment Technologies for PFAS Contaminated Soils", J. Environ. Manage., 255, 109896 (2020).
  17. Y. Ma, X. Li, H. Mao, B. Wang, and P. Wang, "Remediation of Hydrocarbon-Heavy Metal Co-Contaminated Soil by Electrokinetics Combined With Biostimulation", Chem. Eng. J., 353, 410-418 (2018). https://doi.org/10.1016/j.cej.2018.07.131
  18. R.O.A. Rahman, H.A. Ibrahium, and Y.T. Hung, "Liquid Radioactive Wastes Treatment: A Review", Water, 3(2), 551-565 (2011). https://doi.org/10.3390/w3020551
  19. C. N. Trung, G.M. Begun, and D.A. Palmer, "Aqueous Uranium Complexes. 2. Raman Spectroscopic Study of the Complex Formation of the Dioxouranium(VI) Ion With a Variety of Inorganic and Organic Ligands", Inorg. Chem., 31(25), 5280-5287 (1992). https://doi.org/10.1021/ic00051a021
  20. S.J. Markich, "Uranium Speciation and Bioavailability in Aquatic Systems: An Overview", Sci. World J., 2(1), 707-729 (2002). https://doi.org/10.1100/tsw.2002.130
  21. J. Hernandez and D. Ruiz, "Removal of Chloride Ions From a Copper Leaching Solution, Using Electrodialysis, to Improve the Uranium Extraction Through Ion-Exchange", J. Hazard. Mater., 420, 126582 (2021).
  22. Y. Pan, D. Li, R. Feng, E. Wiens, N. Chen, R. Chernikov, J. Gotze, and J. Lin, "Uranyl Binding Mechanism in Microcrystalline Silicas: A Potential Missing Link for Uranium Mineralization by Direct Uranyl Co-Precipitation and Environmental Implications", Geochim. Cosmochim. Acta, 292, 518-531 (2021). https://doi.org/10.1016/j.gca.2020.10.017
  23. A. Massoud, A.M. Masoud, and W.M. Youssef, "Sorption Characteristics of Uranium From Sulfate Leach Liquor by Commercial Strong Base Anion Exchange Resins", J. Radioanal. Nucl. Chem., 322(2), 1065-1077 (2019). https://doi.org/10.1007/s10967-019-06770-9
  24. M. Zhu, L. Liu, J. Feng, H. Dong, C. Zhang, F. Ma, and Q. Wang, "Efficient Uranium Adsorption by Amidoximized Porous Polyacrylonitrile With Hierarchical Pore Structure Prepared by Freeze-Extraction", J. Mol. Liq., 328, 115304 (2021).
  25. H.K. Lee, S. Chang, W. Park, T.J. Kim, S. Park, and H. Jeon, "Effective Treatment of Uranium-contaminated Soil-Washing Effluent Using Precipitation/Flocculation Process for Water Reuse and Solid Waste Disposal", J. Water Process Eng., 48, 102890 (2022).
  26. H.K. Lee, W. Park, S. Chang, H. Jeon, and S. Park, "Uranium Recovery From Sulfate-based Acidic Soil Washing Effluent Using Ion-Exchange Resins", Water Air Soil Pollut., 233, 453 (2022).
  27. H.K. Lee, I. Kim, I.H. Yoon, W. Park, S. Chang, H. Jeon, and S. Park, "A Simple and Effective Purification Method for Removal of U(VI) From Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance", J. Radiat. Prot. Res., 48(2), 77-83 (2023). https://doi.org/10.14407/jrpr.2022.00059
  28. H.K. Lee, B.M. Jun, I. Kim, H.C. Eun, W. Park, W.H. Jang, T.J. Kim, S.N. Nam, Y. Yoon, and S. Park, "Design and Applicability of a Water Recycling System to Treat Wastewater Generated From Real Uranium-contaminated Soil", Chem. Eng. J., 472, 144927 (2023).
  29. Y. Ma, F. Li, Y. Jiang, W. Yang, L. Lv, H. Xue, and Y. Wang, "Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate", Bull. Environ. Contam. Toxicol., 97, 392-394 (2016). https://doi.org/10.1007/s00128-016-1862-z
  30. T. Fu, B. Zhang, X. Gao, S. Cui, C.Y. Guan, Y. Zhang, B. Zhang, and Y. Peng, "Recent Progresses, Challenges, and Opportunities of Carbon-based Materials Applied in Heavy Metal Polluted Soil Remediation", Sci. Total Environ., 856(Part 1), 158810 (2023).
  31. E. Koubek, M.L. Haggett, C.J. Battaglia, K.M. IbneRasa, H.Y. Pyun, and J.O. Edwards, "Kinetics and Mechanism of the Spontaneous Decompositions of Some Peroxoacids, Hydrogen Peroxide and t-Butyl Hydroperoxide", J. Am. Chem. Soc., 85(15), 2263-2268 (1963). https://doi.org/10.1021/ja00898a016
  32. International Atomic Energy Agency. Clearance Levels for Radionuclides in Solid Materials: Application of Exemption Principles: Interim Report for Comment, IAEA Waste Management Section Report, IAEATECDOC-855 (1996).
  33. S. Chang, H.K. Lee, H.B. Kang, T.J. Kim, S. Park, and H. Jeon, "Decontamination of Uranium-contaminated Soil by Acid Washing With Uranium Recovery", Water Air Soil Pollut., 232, 415 (2021).
  34. V.N. Rychkov, A.L. Smirnov, S.Y. Skripchenko, A. Pastukhov, and N.A. Poponin, "Precipitation of Yellowcake From Pregnant Regenerate by Various Reagents", J. Radioanal. Nucl. Chem., 314(3), 1741-1746 (2017). https://doi.org/10.1007/s10967-017-5539-9
  35. M.J. Kang, B.E. Han, and P.S. Hahn, "Precipitation and Adsorption of Uranium(VI) Under Various Aqueous Conditions", Environ. Eng. Res., 7(3), 149-157 (2002). https://doi.org/10.4491/eer.2002.7.3.149
  36. H.C. Eun, J.Y. Jung, S.Y. Park, J.S. Park, N.O. Chang, S.B. Kim, and B.K. Seo, "Decomposition of a High-Concentration Hydrazine in Wastewater From A Chemical Decontamination Process of A Nuclear Facility", Int. J. Environ. Res., 14, 385-391 (2020). https://doi.org/10.1007/s41742-020-00260-7
  37. N. Perdrial, A. Vazquez-Ortega, G. Wang, M. Kanematsu, K.T. Mueller, W. Um, C.I. Steefel, P.A. O'Day, and J. Chorover, "Uranium Speciation in Acid Waste-weathered Sediments: The Role of Aging and Phosphate Amendments", Appl. Geochem., 89, 109-120 (2018). https://doi.org/10.1016/j.apgeochem.2017.12.001
  38. H. Nakui, K. Okitsu, Y. Maeda, and R. Nishimura, "The Effect of pH on Sonochemical Degradation of Hydrazine", Ultrason. Sonochem., 14(5), 627-632 (2007). https://doi.org/10.1016/j.ultsonch.2006.11.008
  39. G.W. Luther III and T.G. Ferdelman, "Voltammetric Characterization of Iron(II) Sulfide Complexes in Laboratory Solutions and in Marine Waters and Porewaters", Environ. Sci. Technol., 27(6), 1154-1163 (1993). https://doi.org/10.1021/es00043a015
  40. J.Z. Zhang, and F.J. Millero, "Investigation of Metal Sulfide Complexes in Sea Water Using Cathodic Stripping Square Wave Voltammetry", Anal. Chim. Acta, 284(3), 497-504 (1994). https://doi.org/10.1016/0003-2670(94)85056-9
  41. D. Wei and K. Osseo-Asare, "Formation of Iron Mono-sulfide: A Spectrophotometric Study of the Reaction Between Ferrous and Sulfide Ions in Aqueous Solutions", J. Colloid Interface Sci., 174(2), 273-282 (1995). https://doi.org/10.1006/jcis.1995.1392
  42. G.W. Luther, D.T. Rickard, S. Theberge, and A. Olroyd, "Determination of Metal (Bi)Sulfide Stability Constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by Voltammetric Methods", Environ. Sci. Technol., 30(2), 671-679 (1996). https://doi.org/10.1021/es950417i
  43. R. Al-Farawati and C.M. Van Den Berg, "Metal-Sulfide Complexation in Seawater", Mar. Chem., 63(3-4), 331-352 (1999). https://doi.org/10.1016/S0304-4203(98)00056-5
  44. W. Davison, N. Phillips, and B.J. Tabner, "Soluble Iron Sulfide Species in Natural Waters: Reappraisal of Their Stoichiometry and Stability Constants", Aquat. Sci., 61, 23-43 (1999). https://doi.org/10.1007/s000270050050
  45. D.J. Klocke and A.N. Hixson, "Solubility of Ferrous Iron in Aqueous Ammoniacal Solutions", Ind. Eng. Chem. Process Des. Dev., 11(1), 141-146 (1972). https://doi.org/10.1021/i260041a028
  46. S.E. Ziemniak, M.E. Jones, and K.E.S. Combs, "Magnetite Solubility and Phase Stability in Alkaline Media at Elevated Temperatures", J. Solution Chem., 24(9), 837-877 (1995). https://doi.org/10.1007/BF00973442
  47. F. Amini and H.V. Truong, "Effect of Filter Media Particle Size Distribution on Filtration Efficiency", Water Qual. Res. J., 33(4), 589-594 (1998). https://doi.org/10.2166/wqrj.1998.033
  48. A.D. Stickland, E.H. Irvin, S.J. Skinner, P.J. Scales, A. Hawkey, and F. Kaswalder, "Filter Press Performance for Fast-Filtering Compressible Suspensions", Chem. Eng. Technol., 39(3), 409-416 (2016). https://doi.org/10.1002/ceat.201500354
  49. D. Grasso, M.A. Butkus, D. O'Sullivan, and N.P. Nikolaidis, "Soil-Washing Design Methodology for a Lead-contaminated Sandy-Soil", Water Res., 31(12), 3045-3056 (1997). https://doi.org/10.1016/S0043-1354(97)00177-2
  50. C. Walling and K. Amarnath, "Oxidation of Mandelic Acid by Fenton's Reagent", J. Am. Chem. Soc., 104(5), 1185-1189 (1982). https://doi.org/10.1021/ja00369a005
  51. W. Lin, C. Gong, R. Chen, X. He, J. Nan, G. Li, H.H. Ngo, and A. Ding, "In-situ Utilization of EPS Improves the Directional Oxidation Ability of Fe (III)/H2O2 and Enhances Sludge Dewaterability", Chem. Eng. J., 475, 146123 (2023).
  52. Y. Ohashi, Y. Tanaka, Y. Tsunashima, and Y. Ikeda, "Development of Methods for Recovering Uranium From Sludge-like Uranium Generated in Decontamination of Metal Wastes", J. Nucl. Sci. Technol., 54(3), 382-390 (2017).
  53. Y. Wang and L. Serventi, "Sustainability of Dairy and Soy Processing: A Review on Wastewater Recycling", J. Clean. Prod., 237, 117821 (2019).
  54. K.W. Han, J. Heinonen, and A. Bonne, "Radioactive Waste Disposal: Global Experience and Challenges", IAEA Bulletin, 39(1), 33-41 (1997).
  55. W. Belter and D. Pearce, "Radioactive Waste Management", in Reactor Technology: Selected Reviews, L.E. Link, ed., 149-248, Springfield, Virginia (1965).
  56. M.J. Lottering, L. Lorenzen, N.S. Phala, J.T. Smit, and G.A.C. Schalkwyk, "Mineralogy and Uranium Leaching Response of Low Grade South African Ores", Miner. Eng., 21(1), 16-22 (2008). https://doi.org/10.1016/j.mineng.2007.06.006