DOI QR코드

DOI QR Code

Separation and Determination of Citric Acid by Ion Chromatography in Radioactive Concrete Waste

  • Received : 2023.12.06
  • Accepted : 2024.02.26
  • Published : 2024.03.30

Abstract

During the dismantling of nuclear facilities, a large quantity of radioactive concrete is generated and chelating agents are required for the decontamination process. However, disposing of environmentally persistent chelated wastes without eliminating the chelating agents might increase the rate of radionuclide migration. This paper reports a rapid and straightforward ion chromatography method for the quantification of citric acid (CA), a commonly used chelating agent. The findings demonstrate acceptable recovery yields, linearities, and reproducibilities of the simulated samples, confirming the validity of the proposed method. The selectivity of the proposed method was confirmed by effectively separating CA from gluconic acid, a common constituent in concretes. The limits of detection and quantification of the method were 0.679 and 2.059 mg·L-1, respectively, while the recovery yield, indicative of the consistency between theoretical and experimental concentrations, was 85%. The method was also employed for the quantification of CA in a real concrete sample. These results highlight the potential of this approach for CA detection in radioactive concrete waste, as well as in other types of nuclear wastes.

Keywords

Acknowledgement

This study was supported by the KAERI Institutional Program (Project No. 521330-23).

References

  1. R.J. Serne, A.R. Felmy, K.J. Cantrell, K.M. Krupka, J.A. Campbell, H. Bolton Jr, and J.K. Fredrickson. Characterization of Radionuclide-Chelating Agent Complexes Found in Low-Level Radioactive Decontamination Waste, Pacific Northwest National Laboratory Report, NUREG/CR-6124, PNL-8856 (1996). 
  2. M.A. Glaus, L.R. Van Loon, S. Achatz, A. Chodura, and K. Fischer, "Degradation of Cellulosic Materials Under the Alkaline Conditions of a Cementitious Repository for Low and Intermediate Level Radioactive Waste: Part I: Identification of Degradation Products", Anal. Chim. Acta, 398(1), 111-122 (1999).  https://doi.org/10.1016/S0003-2670(99)00371-2
  3. J.L. Means, D.A. Crerar, and J.O. Duguid, "Migration of Radioactive Wastes: Radionuclide Mobilization by Complexing Agents", Science, 200(4349), 1477-1481 (1978).  https://doi.org/10.1126/science.200.4349.1477
  4. S. Giroux, S. Aury, B. Henry, and P. Rubini, "Complexation of Lanthanide (III) Ions With Polyhydroxy Carboxylic Acids in Aqueous Solutions", Eur. J. Inorg. Chem., 2002(5), 1162-1168 (2002).  https://doi.org/10.1002/1099-0682(200205)2002:5<1162::AID-EJIC1162>3.0.CO;2-O
  5. J. Tits, E. Wieland, and M.H. Bradbury, "The Effect of Isosaccharinic Acid and Gluconic Acid on the Retention of Eu (III), Am (III) and Th (IV) by Calcite", Appl. Geochem., 20(11), 2082-2096 (2005).  https://doi.org/10.1016/j.apgeochem.2005.07.004
  6. G. Owens, V.K. Ferguson, M.J. McLaughlin, I. Singleton, R.J. Reid, and F. Smith, "Determination of NTA and EDTA and Speciation of Their Metal Complexes in Aqueous Solution by Capillary Electrophoresis", Environ. Sci. Technol., 34(5), 885-891 (2000).  https://doi.org/10.1021/es990309m
  7. A. Padarauskas and G. Schwedt, "Capillary Electrophoresis in Metal Analysis: Investigations of Multi-elemental Separation of Metal Chelates With Aminopolycarboxylic Acids", J. Chromatogr. A, 773(1-2), 351-360 (1997).  https://doi.org/10.1016/S0021-9673(97)00184-2
  8. K. Matsumoto, K. Ishida, T. Nomura, and Y. Osajima, "Conductometric Flow Injection Analysis of the Organic Aacid Content in Citrus Fruits", Agric. Biol. Chem., 48(9), 2211-2215 (1984).  https://doi.org/10.1080/00021369.1984.10866476
  9. M.C. Gancedo and B.S. Luh, "HPLC Analysis of Organic Acids and Sugars in Tomato Juice", J. Food Sci., 51(3), 571-573 (1986).  https://doi.org/10.1111/j.1365-2621.1986.tb13881.x
  10. H. Moellering and W. Gruber, "Determination of Citrate With Citrate Lyase", Anal. Biochem., 17(3), 369-376 (1966).  https://doi.org/10.1016/0003-2697(66)90172-2
  11. M. Cocchi, P. Lambertini, D. Manzini, A. Marchetti, and A. Ulrici, "Determination of Carboxylic Acids in Vinegars and in Aceto Balsamico Tradizionale di Modena by HPLC and GC Methods", J. Agric. Food Chem., 50(19), 5255-5261 (2002).  https://doi.org/10.1021/jf020155l
  12. A.I. Ruiz-Matute, O. Hernandez-Hernandez, S. Rodriguez-Sanchez, M.L. Sanz, and I. Martinez-Castro, "Derivatization of Carbohydrates for GC and GC-MS Analyses", J. Chromatogr. B, 879(17-18), 1226-1240 (2011).  https://doi.org/10.1016/j.jchromb.2010.11.013
  13. R. Widiastuti, P.R. Haddad, and P.E. Jackson, "Approaches to Gradient Elution in Ion-Exclusion Chromatography of Carboxylic Acids", J. Chromatogr. A, 602(1-2), 43-50 (1992).  https://doi.org/10.1016/0021-9673(92)80061-X
  14. M.H. Bradbury and F.A. Sarott. Sorption Databases for the Cementitious Near-Field of a L/ILW Repository for Performance Assessment, Paul Scherrer Institute Report, PSI-95-06 (1995). 
  15. K. Fischer, J. Kotalik, and A. Kettrup, "Chromatographic Properties of the Ion-Exclusion Column lonPac ICEAS6 and Application in Environmental Analysis Part I: Chromatographic Properties", J. Chromatogr. Sci., 37(12), 477-485 (1999).  https://doi.org/10.1093/chromsci/37.12.477
  16. L. du Bois de Maquille, P. Wund, L. Renaudin, C. Gautier, A. Jardy, J. Vial, D. Thiebaut, P. Fichet, and F. Goutelard, "Determination of Gluconate in Nuclear Waste by High-Performance Liquid Chromatography: Comparison of Pulsed Amperometric Detection and Electrospray Mass Spectrometry Detection", J. Radioanal. Nucl. Chem., 306(1), 213-220 (2015).  https://doi.org/10.1007/s10967-015-4076-7
  17. European Commission, Commission Decision 2002/657/EC, Official Journal of European Communities, 221, 8-36 (2002). 
  18. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, Validation of Analytical Procedures: Text and Terminology Q2(R2), ICH Harmonised Guideline (2023). 
  19. A.M.O. Leite, D.C.A. Leite, E.M. Del Aguila, T.S. Alvares, R.S. Peixoto, M.A.L. Miguel, J.T. Silva, and V.M.F. Paschoalin, "Microbiological and Chemical Characteristics of Brazilian Kefir During Fermentation and Storage Processes", J. Dairy Sci., 96(7), 4149-4159 (2013). https://doi.org/10.3168/jds.2012-6263