DOI QR코드

DOI QR Code

Isotopic Analysis of Decay Heat Contributors From Actinides and Fission Fragments of Spent Nuclear Fuel for Intermediate- and Long-Term Storage Times

  • Received : 2023.08.24
  • Accepted : 2023.12.12
  • Published : 2024.03.30

Abstract

In this research, a detailed analysis of the decay heat contributions of both actinides and non-actinides (fission fragments) from spent nuclear fuel (SNF) was made after 50 GWd·tHM-1 burnup of fresh uranium fuel with 4.5% enrichment lasted for 1,350 days. The calculations were made for a long storage period of 300 years divided into four sections 1, 10, 100, and 300 years so that we could study the decay heat and physical disposal ratios of radioactive waste in medium- and long-term storage periods. Fresh fuel burnup calculations were made using the code MCNP, while isotopic content and then decay heat were calculated using the built-in stiff equation solver in the MATLAB code. It is noted that only around 12 isotopes contribute more than 90% of the decay heat at all times. It is also noted that the contribution of actinides persists and is the dominant ether despite decreasing decay heat, while the effect of fission products decreases at a very rapid rate after about 40 years of storage.

Keywords

References

  1. M.S. Yim, Nuclear Waste Management: Science, Technology, and Policy (Lecture Notes in Energy, 83), 1st ed., 1-8, Springer Dordrecht, Netherlands (2021). 
  2. S. Manohar, G. Sugilal, R.K. Bajpai, C.P. Kaushik, and K. Raj, "Radioactive Waste Management", in: Nuclear Fuel Cycle, B.S. Tomar and P.R. Vasudeva Rao, eds., 255-331, Springer Nature, Singapore (2023). 
  3. J. Jang, B. Ebiwonjumi, W. Kim, J. Park, J. Choe, and D. Lee, "Validation of Spent Nuclear Fuel Decay Heat Calculation by a Two-Step Method", Nucl. Eng. Technol., 53(1), 44-60 (2021).  https://doi.org/10.1016/j.net.2020.06.028
  4. A. Shama, D. Rochman, S. Pudollek, S. Caruso, and A. Pautz, "Uncertainty Analyses of Spent Nuclear Fuel Decay Heat Calculations Using SCALE Modules", Nucl. Eng. Technol., 53(9), 2816-2829 (2021).  https://doi.org/10.1016/j.net.2021.03.013
  5. J. Jang, C. Kong, B. Ebiwonjumi, A. Cherezov, Y. Jo, and D. Lee, "Uncertainty Quantification in Decay Heat Calculation of Spent Nuclear Fuel by STREAM/RASTK", Nucl. Eng. Technol., 53(9), 2803-2815 (2021).  https://doi.org/10.1016/j.net.2021.03.010
  6. G. Ilas, I.C. Gauld, and H. Liljenfeldt, "Validation of ORIGEN for LWR Used Fuel Decay Heat Analysis With SCALE", Nucl. Eng. Des., 273, 58-67 (2014).  https://doi.org/10.1016/j.nucengdes.2014.02.026
  7. P. Jansson, M. Bengtrsson, U. Backstrom, F. Alvarez-Velarde, D. Calic et al., "Blind Benchmark Exercise for Spent Nuclear Fuel Decay Heat", Nucl. Sci. Eng., 196(9), 1125-1145 (2022).  https://doi.org/10.1080/00295639.2022.2053489
  8. A. Shama, D. Rochman, S. Caruso, and A. Pautz, "Validation of Spent Nuclear Fuel Decay Heat Calculations Using Polaris, ORIGEN and CASMO5", Ann. Nucl. Energy, 165, 108758 (2022). 
  9. G. Ilas and H. Liljenfeldt, "Decay Heat Uncertainty for BWR Used Fuel Due to Modeling and Nuclear Data Uncertainties", Nucl. Eng. Des., 319, 176-184 (2017).  https://doi.org/10.1016/j.nucengdes.2017.05.009
  10. D. Rochman, A. Dokhane, A. Vasiliev, H. Ferroukhi, and M. Hursin, "Nuclear Data Uncertainties for Swiss BWR Spent Nuclear Fuel Characteristics", Eur. Phys. J. Plus, 135(2), 233 (2020). 
  11. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov et al., "ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library With CIELO-Project Cross Sections, New Standards and Thermal Scattering Data", Nucl. Data Sheets, 148, 1-142 (2018).  https://doi.org/10.1016/j.nds.2018.02.001
  12. D. Calic and M. Kromar, "Spent Fuel Characterization Analysis Using Various Nuclear Data Libraries", Nucl. Eng. Technol., 54(9), 3260-3271 (2022).  https://doi.org/10.1016/j.net.2022.04.009
  13. H.R. Doran, A.J. Cresswell, D.C.W. Sanderson, and G. Falcone, "Nuclear Data Evaluation for Decay Heat Analysis of Spent Nuclear Fuel Over 1-100 k Year Timescale", Eur. Phys. J. Plus, 137(6), 665 (2022). 
  14. J. Li, D. She, L. Shi, and J. Liang, "The NUIT Code for Nuclide Inventory Calculations", Ann. Nucl. Energy, 148, 107690 (2020). 
  15. A.L. Nichols, P. Dimitriou, A. Algora, M. Fallot, L. Giot, F.G. Kondev, T. Yoshida, M. Karny, G. Mukherjee, B.C. Rasco, K.P. Rykaczewski, A.A. Sonzogni, and J.L. Tain, "Improving Fission-Product Decay Data for Reactor Applications: Part I-Decay Heat", Eur. Phys. J. A, 59(4), 78 (2023). 
  16. R.R. Kommalapati, F. Asah-Opoku, H. Du, and Z. Huque, "Chapter 3, Monte Carlo Simulations of Nuclear Fuel Burnup", in: Nuclear Material Performance, R.O.A Rahman and H.El-Din M. Saleh, 37-55, Books on Demand, Norderstedt (2016). 
  17. S.L. Eshkabilov, Practical MATLAB Modeling With Simulink: Programming and Simulating Ordinary and Partial Differential Equations, Apress, New York (2020). 
  18. H. Bateman, "The Solution of a System of Differential Equations Occurring in the Theory of Radioactive Transformations", Proc. Cambridge Philos. Soc., 15, 423-427 (1910). 
  19. J.R. Cash, "Review Paper: Efficient Numerical Methods for the Solution of Stiff Initial-Value Problems and Differential Algebraic Equations", Proc. R. Soc. A: Math. Phys. Eng. Sci., 459(2032), 797-815 (2003).  https://doi.org/10.1098/rspa.2003.1130
  20. E. Galaris, G. Fabiani, F. Calabro, D. di Serafino, and C. Siettos. November 24 2021. "Numerical Solution of Stiff ODEs With Physics-Informed RPNNs." Arxiv homepage. Accessed Aug. 10 2023. Available from: https://arxiv.org/abs/2108.01584.