DOI QR코드

DOI QR Code

수경재배 토마토 재사용 암면 배지의 기초 물리화학성 변화 비교

Comparison of Basal Physicochemical Changes of Reused Rockwool Substrate in Hydroponic Tomato Cultivation

  • 이재성 (국립안동대학교 대학원 원예육종학과 ) ;
  • 신종화 (국립안동대학교 생명과학대학 원예육종학과)
  • Jae Seong Lee (Department of Horticulture and Breeding, College of Life Science and Biotechnology, Andong National University) ;
  • Jong Hwa Shin (Department of Horticulture and Breeding, College of Life Science and Biotechnology, Andong National University)
  • 투고 : 2023.12.28
  • 심사 : 2024.04.29
  • 발행 : 2024.04.30

초록

암면은 우수한 물리화학적 특성을 가지고 있어 작물 재배 생산에 많이 사용된다. 그러나 높은 구매 비용과 폐기가 용이하지 않다는 단점이 있다. 배지의 재사용은 이러한 단점을 보완할 수 있다. 배지는 재사용 시 소독 및 재수화 과정을 거쳐야 하며, 이 과정에서 발생되는 다양한 물리화학적 변화 또한 고려하여야 한다. 본 연구는 두 가지 암면배지(재사용, 미사용)의 물리적 특성을 비교하고, 재사용 암면 배지의 재수화 과정에서 발생하는 화학적 특성 분석을 통해 암면 배지의 재사용 가능성을 판단하고자 하였다. 배지 물리화학성 비교 실험은 2023년 3월부터 8월까지 토마토 재배에 사용된 암면배지와 미사용 암면배지를 이용하여 진행되었으며, 재배 기간 동안 암면에 공급된 배양액의 전기전도도와 pH는 각각 1.8-3.5 dS·m-1, 5.8-6.0이었다. 배수시간 및 배수량은 관수모니터링 시스템 상단 및 하단에 설치된 로드셀을 통해 측정되었다. 암면배지의 물리적 특성 비교에서 무게와 밀도는 재사용 암면배지에서 높은 경향을 보였으며, 포수 후 평균 배수 시간은 재사용 암면이 미사용 암면에 비해 1.5배 늦었다. 암면 배지의 부분별 염류 농도는 재사용 암면배지가 미사용 암면배지에 비해 낮게 나타났다. 관수 시간에 따른 배액의 전기전도도 변화는 배수가 시작되는 시점에서 가장 컸으며, 배액의 양이 증가할수록 급속하게 작아지는 경향을 보였다. 위 실험 결과를 통해 관수시간 및 관수량과 배액의 전기전도도 변화율은 exponential decay한 관계를 보였다.

Rockwool substrate has superior physicochemical characteristics and is often used in crop cultivation. However, rockwool substrate has the disadvantages of high purchase cost and difficulty in disposal. Reuse of substrate can compensate for these disadvantages. Substrate must be disinfected and rehydrated during reuse, and various physicochemical changes during this process must also be considered. This study was to compare the physical properties of two types of rockwool substrates (reused and unused) and to evaluate the reuse potential of rockwool substrate by analyzing the chemical properties of the reused rockwool substrate during the rehydration process. The experiment on substrate physicochemical properties comparison was conducted from March to August 2023 using used rockwool substrates in tomato cultivation and unused rockwool substrates. Drainage time, drainage volume, and substrate weight were measured using load cells installed at the top and bottom of the irrigation monitoring system. The reused rockwool substrate weight and density were higher than those of the unused rockwool substrate, while the average drainage time after irrigation was 1.5 times longer for the reused rockwool than for the unused rockwool. The salinity concentration in different parts of the reused rockwool substrate was found to be lower in the reused rockwool substrate compared to the unused rockwool substrate. The electrical conductivity of the drainage was at its peak at the beginning of the drainage and decreased exponentially as the drainage volume increased. Change in electrical conductivity of the drainage over the irrigation time showed an exponential decay pattern. Through the experiments, the potential reusability of the rock wool substrate was assessed by conducting a comparative analysis of its physicochemical properties.

키워드

과제정보

이 논문은 국립안동대학교 기본연구지원사업에 의하여 연구되었음.

참고문헌

  1. Acuna R.A., and S. Bonachela 2005, Response of a sweet pepper crop grown in new and two-year-old reused rockwool slabs in greenhouse on the Mediterranean coast of south-east Spain. Acta Hortic 697:189-194. doi:10.17660/ActaHortic.2005.697.23
  2. Acuna R.A., S. Bonachela, and J.J. Magan 2013, Reuse of rockwool slabs and perlite grow-bags in a low-cost greenhouse: Substrates' physical properties and crop production. Sci Hortic 160:139-147. doi:10.1016/j.scienta.2013.05.031
  3. An C.B., and J.H. Shin 2021, Comparison of rockwool, reused rockwool and coir medium on tomato (Solanum lycopersicum) growth, fruit quality and productivity in greenhouse soilless culture. J Bio-Environ Control 30:175-182. doi:10.12791/KSBEC.2021.30.3.175
  4. Borosic J., B. Benko, B. Novak, N. Toth, I. Zutic, and S. Fabek 2007, Growth and yield of tomato grown on reused rockwool slabs. Acta Hortic 819:221-226. doi:10.17660/ActaHortic.2009.819.24
  5. Bougoul S., and T. Boulard 2006, Water dynamics in two rockwool slab growing substrates of contrasting densities. Sci Hortic 107:399-404. doi:10.1016/j.scienta.2005.11.007
  6. Chalker-Scott L. 1999, Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1-9. doi:10.1111/j.1751-1097.1999.tb01944.x
  7. Corwin D.L., J.D. Rhoades, and J. Simunek 2007, Leaching requirements for soil salinity control: steady-state versus transient models. Agric Water Manag 90:165-180. doi:10.1016/j.agwat.2007.02.007
  8. Gruda N.S. 2019, Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 9:298-298. doi:10.3390/agronomy9060298
  9. Kim T.W., S.C. Hong, P.I. Yi, S.H. Jang, and J.M. Suh 2023, Current Status of Using Rock Wool at Hydroponic Greenhouses. J Korea Soc Waste Manag 40:429-440 doi:10.9786/kswm.2023.40.5.429
  10. Korean Statistical Information Service (KOSIS) 2020, Vegetable production (fruits and vegetables). (in Korean) Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0027&conn_path=I3 Accessed 5 July 2022
  11. Lee J.S., H.D. Lee, S.G. Lee, K.S. Kwak, B.G. Kim, T.H. Kim, J.H. Baek, S.Y. Rho, and Y.S. Hong 2019, Effects of environmental substrate composition on the growth and yield of hydroponically grown tomato. J Environ Sci Int 28:729-735. doi:10.5322/JESI.2019.28.9.729
  12. McGrath J.M., and D.B. Lobell 2013, Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ 36:697-705. doi:10.1111/pce.12007
  13. Ombodi A., and M.B. Valkai 2020, Effect of reused rockwool slabs on the performance of 'Daras F1' hot pepper under glasshouse conditions. Hung Agric Eng 37:48-52. doi:10.17676/HAE.2020.37.48
  14. Raviv M., R. Wallach, A. Silber, and A. Bar-Tal 2002, Substrates and their analysis. In D. Savvas, H Passam, eds, Hydroponic production of vegetables and ornamentals. Embryo Publ, pp 25-102.
  15. Savvas D. 2003, Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. Available at: www.world-food.net (Accessed April 9, 2019).
  16. Savvas D., and N. Gruda 2018, Application of soilless culture technologies in the modern greenhouse industry e a review. Eur J Hortic Sci 8:280-293. doi:10.17660/ejhs.2018/83.5.2.
  17. Shin J.H., and J.E. Son 2015, Comparisons of water behavior and moisture content between rockwools and coir used in soilless culture. Protected Hortic Plant Fac 24:39-44 (in Korean). doi:10.12791/KSBEC.2015.24.1.039
  18. Sonneveld C., and W. Voogt 2009, Plant nutrition of greenhouse crops. Springer, NY, USA. doi:10.1007/978-90-481-2532-6
  19. Urrestarazu M., C. Guillen, P.C. Mazuela, and G. Carrasco 2008, Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Sci Hortic 116:104-108. doi:10.1016/j.scienta.2007.10.030
  20. Wu J., R. Zhang, and S. Gui 1999, Modelling soil water movement with water uptake by roots. Plant Soil 215:7-17. doi:10.1023/A:1004702807951