DOI QR코드

DOI QR Code

The Optimum Photoperiod on Floral Differentiation of French Marigold Grown in a Closed-type Plant Factory

완전제어형 식물공장에서 재배되는 프렌치매리골드의 화아분화를 위한 최적의 광주기 구명

  • Nayoung Kwak (Department of Horticultural Science, Jeju National University) ;
  • Bo Hyun Sung (Department of Horticultural Science, Jeju National University) ;
  • K.P.S. Kumaratenna (Department of Horticultural Science, Jeju National University) ;
  • Young-Yeol Cho (Department of Horticultural Science, Jeju National University)
  • 곽나영 (제주대학교 원예학과) ;
  • 성보현 (제주대학교 원예학과) ;
  • 피우미 사우미야 쿠마라테나 (제주대학교 원예학과) ;
  • 조영열 (제주대학교 원예학과)
  • Received : 2024.01.03
  • Accepted : 2024.01.30
  • Published : 2024.01.31

Abstract

Among the various environmental conditions necessary for growing crops, light is closely related to the anthesis. This study aimed to determine the optimal photoperiod affecting floral differentiation in an edible flower, marigold, to efficiently cultivate the crops in a closed-type plant factory. The experiment was conducted with photoperiods of 4, 8, 12, and 16 hours. French marigold (Tagetes patula L.) 'Durango Red' seeds were sown in polyurethane sponges, and the photoperiod treatments were applied immediately. The extent of floral differentiation was examined at 2-3 day intervals, defined as the visible appearance of flower buds at least 2 mm in size. The growth parameters such as shoot fresh weight and dry weight, height, and leaf area were measured. The optimal photoperiod was determined based on the days when the floral differentiation had occurred in 50% of the total plants. In the 4-hour treatment, proper growth and flower buds did not appear. From the 8-hour treatment, the plant grew normally, and floral differentiation occurred, however, the 8-hour treatment showed the slowest floral differentiation compared to the 12 hours treatments or more. The 12- and 16-hour treatments didn't show significant differences in floral differentiation. While the 16-hour treatment exhibited the highest results in all growth parameters, it was not significantly different from the 12-hour treatment except for shoot dry weight and leaf area. According to the results, 8 hours of photoperiod induced floral differentiation. However, more time was required for flower bud formation, and plant growth was significantly lower compared to photoperiods of 12 hours or more. Considering the energy consumption and its growth, the optimal photoperiod for marigold was 12 hours.

작물을 재배하는 데 필요한 여러 가지 환경 조건 중 광은 개화와 밀접한 연관이 있다. 본 연구는 식용화, 매리골드 화아분화에 영향을 주는 최적의 광주기를 구명하여 완전제어형 식물공장에서 효율적으로 재배하기 위해 진행되었다. 실험에 사용된 광주기는 4, 8, 12, 16시간, 총 4가지로 설정하였다. 매리골드 '듀란고 레드' 종자를 우레탄 스펀지에 파종한 직후부터 광주기를 처리하였다. 화아분화는 꽃봉오리가 약 2mm 이상일 때 화아분화가 되었다고 정의하였고, 2-3일 간격으로 조사하였다. 생육 조사는 지상부의 생체중, 건물중, 초장, 엽면적을 조사하였다. 최적의 광주기는 식물체의 50%가 화아분화 된 날을 기준으로 정의하였다. 4시간 처리구에서는 식물체가 제대로 자라지 못하며 화아도 형성되지 않았다. 8시간 이상의 처리구에서부터 식물체가 정상적으로 생장하고 화아분화가 이루어졌지만, 8시간 처리구는 12시간 이상의 처리구에 비해 화아분화가 더디게 일어났다. 반면에 12시간 처리구와 16시간 처리구는 서로 유의하지 않은 결과를 보였다. 모든 생육조사 항목에서 16시간 광주기 처리구가 가장 높은 값을 나타냈으나 지상부의 건물중과 엽면적을 제외한 나머지 항목에서 12시간 처리구와 유의하지 않았다. 실험 결과에 따르면, 8시간 광주기에서도 화아분화가 일어났지만, 화아형성까지의 시간이 12시간 이상의 광주기일 때보다 더 많이 소요되었으며, 식물체의 생육 또한 12시간 이상의 광주기를 조사받은 식물체보다 낮게 나타났다. 본 실험에서 에너지 소비량을 고려한 최적의 매리골드 '듀란고 레드'의 광주기는 12시간으로 판단된다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술사업의 지원을 받아 연구되었음(과제고유번호: 421033043HD050).

References

  1. Armitage A.M., and J.M. Laushman 1989, Photoperiodic control of flowering of Salvia leucantha. J Am Soc Hortic Sci 114:755-758. doi:10.21273/jashs.114.5.755 
  2. Bhave A., V. Schulzova, L. Mrnka, and J. Hajslova 2020, Influence of harvest date and postharvest treatment on carotenoid and flavonoid composition in French marigold flowers. J Agric Food Chem 68:7880-7889. doi:10.1021/acs.jafc.0c02042 
  3. Cha M.K., J.E. Son, and Y.Y. Cho 2014, Growth model of sowthistle (Ixeris dentata Nakai) using expolinear function in a closed-type plant production system. Hortic Sci Technol 32:165-170. doi:10.7235/hort.2014.13141 
  4. Collinson S.T., R.H. Ellis, R.J. Summerfield, and E.H. Roberts 1992, Durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering in four cultivars of rice (Oryza sativa L.). Ann Bot 70:339-346. doi:10.1093/oxfordjournals.aob.a088483 
  5. Dujmovic M., S. Radman, N. Opacic, S. Fabek Uher, V. Mikulicin, S. Voca, and J. Sic Zlabur 2022, Edible flower species as a promising source of specialized metabolites. Plants 11:2529. doi:10.3390/plants11192529 
  6. Gao W., D. He, F. Ji, S. Zhang, and J. Zheng 2020, Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 10:1082. doi:10.3390/agronomy10081082 
  7. Han I.S., and D.Y. Yeam 1978, Influences of photoperiod on the growth and flowering responses of marigold, salvia, calendula, petunia, and zinnia plants. Hortic Environ Biotechnol 19:117-128. 
  8. Heo J.W., C.W. Lee, and K.Y. Paek 2006, Influence of mixed LED radiation on the growth of annual plants. J Plant Biol 49:286-290. doi:10.1007/bf03031157 
  9. Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without soil. Calif Agri Exp Stat Circ 347:1-32. 
  10. Hong S.C., S.I. Kwon, M.K. Kim, M.J. Chae, G.B. Jung, and K.H. So 2013, Flowering control by using red light of chrysanthemum. Korean J Environ Agric 32:123-127. doi:10.5338/kjea.2013.32.2.123 
  11. Hwang H.S., H.W. Jeong, and S.J, Hwang 2022, Flowering and inflorescence development characteristics of Korean mint affected by different photoperiods. J Bio-Env Con 31:188-193. doi:10.12791/ksbec.2022.31.3.188 
  12. Hwang Y.H., J.E. Park, Y.H. Chang, J.U. An, H.S. Yoon, and K.P. Hong 2016, Effects of LED (light emitting diode) photoperiod and light intensity on growth and yield of Taraxacum coreanum Nakai in a plant factory. J Bio-Env Con 25:232-239. doi:10.12791/ksbec.2016.25.4.232 
  13. Im J.U., Y.c. Yoon, K.W. Seo, K.H. Kim, A.K. Moon, and H.T. Kim 2013, Effect of LED light wavelength on chrysanthemum growth. J Bio-Env Con 22:49-54. doi:10.12791/ksbec.2013.22.1.049 
  14. Jin W., D. Formiga Lopez, E. Heuvelink, and L.F.M. Marcelis 2022, Light use efficiency of lettuce cultivation in vertical farms compared with greenhouse and field. Food Energy Secur 12. doi:10.1002/fes3.391 
  15. Jo J.S., M. Phonsuwan, A.K. Moon, J.Y. Kim, and H.T. Kim 2016, Effect of photoperiod control on growth of common ice plant in the plant factory. J Agric Life Sci 50:95-102. doi:10.14397/jals.2016.50.5.95 
  16. Johansson E., A. Hussain, R. Kuktaite, S.C. Andersson, and M.E. Olsson 2014, Contribution of organically grown crops to human health. Int J Environ Res Public Health 11:3870-3893. doi:10.3390/ijerph110403870 
  17. Kim H.M., J.H Kang, B.R. Jeong, and S.J. Hwang 2015, Light quality and photoperiod affect growth of sowthistle (Ixeris dentata Nakai) in a closed-type plant production system. Hortic Sci Technol 34:67-76. doi:10.12972/kjhst.20160005 
  18. Kim H.R., and Y.H. You 2013, Effects of red, blue, white, and far-red LED source on growth responses of Wasabia japonica seedlings in plant factory. Hortic Sci Technol 31:415-422. doi:10.7235/hort.2013.13011 
  19. Kim M.H., C.E. Song, and Y.J. Park 2021, Study on the quality of marigold (Tagetes erecta L.) flower tea by its manufacture methods for expansion of utilization of marigold as tourism resources. J Korean Soc Rural Tour 24:75-89. 
  20. Kim S., G. Bok, J. Shin, and J. Park 2022, Effects of photoperiod and light intensity on the growth and glucosinolates content of three Brassicaceae species in a plant factory. J Bio-Env Con 31:416-422. doi:10.12791/ksbec.2022.31.4.416 
  21. Kishimoto S., T. Maoka, K. Sumitomo, and A. Ohmiya 2005, Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci Biotechnol Biochem 69:2122-2128. doi:10.1271/bbb.69.2122 
  22. Krijn M.P.C.M., R.F.M. van Elmpt, S.L. van de Voort, C.C.S. Nicole, G. van der Feltz, and T. van den Bergh 2017, Factors critical to plant factory performance. Acta Hortic 1227:615-622. doi:10.17660/actahortic.2018.1227.78 
  23. Kwon Y.S., B.S. You, J.A. Jung, S.K. Park, H.K. Shin, and M.J. Kil 2014, Growth and flowering of standard chrysanthemums according to the light source and light quality in night break treatment. J Bio-Env Con 23:263-268. doi:10.12791/ksbec.2014.23.4.263 
  24. Lee G.I., H.J. Kim, S.J. Kim, J.W. Lee, and J.S. Park 2016a, Increased growth by LED and accumulation of functional materials by florescence lamps in a hydroponics culture system for Angelica gigas. Protected Hort Plant Fac 25:42-48. doi:10.12791/ksbec.2016.25.1.42 
  25. Lee G.J., J.W. Heo, C.R. Jung, H.H. Kim, D.E. Kim, and S.Y. Nam 2016b, Effects of artificial light sources on growth and yield of Peucedanum japonicum hydroponically grown in plant factory. Protected Hort Plant Fac 25:16-23. doi:10.12791/ksbec.2016.25.1.16 
  26. Lee H.S., W.H. Hwang, J.H. Jeong, S.Y. Yang, Y.H. Lim, M.G. Choi, N.J. Jeong, C.G. Lee, and K.J. Choi 2019, Studies on the temperature response and critical day-length affecting the heading date of major cultivating rice varieties in recent Korean paddy field. Korean J Crop Sci 64:323-335. doi:10.7740/kjcs.2019.64.4.323 
  27. Lee J.H., G.H. Park, and M.S. Kim 2022, Analysing dynamics of plant height of standard chysanthemum 'Baekma' using non-linear regression models. Hortic Sci Technol 40:513-524. doi:10.7235/hort.20220046 
  28. Lee MK, Park JS, Song HJ, and Chon SU 2014, Effects of polyphenol and catechin levels on antioxidant activity of several edible flower extracts. Korean J Plant Res 27:111-118. doi:10.7732/kjpr.2014.27.2.111 
  29. Lee Y.T. 2010, Influence of cooking on carotenoid contents in provitamin A-biofortified rice. Korean J Food Preserv 17:897-902. 
  30. Meda A., C.E. Lamien, M. Romito, J. Millogo, and O.G. Nacoulma 2005, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91:571-577. doi:10.1016/j.foodchem.2004.10.006 
  31. Mimoto H., M. Yanase, and H. Chujo 1989, Varietal differences of juvenile phase duration and photoperiodic sensitivity in paddy rice. Jpn J Crop Sci 58:628-634. doi:10.1626/jcs.58.628 
  32. Moccaldi L.A., and E.S. Runkle 2007, Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Salvia splendens and Tagetes patula. J Am Soc Hortic Sci 132:283-288. doi:10.21273/jashs.132.3.283 
  33. Muley B.P., S.S.Khadabadi, and N.B. Banarase 2009, Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Trop J Pharm Res 8:455-465. doi:10.4314/tjpr.v8i5.48090 
  34. Nishimura T., S.M.A. Zobayed, T. Kozai, and E, Goto 2006, Effect of light quality of blue and red fluorescent lamps on growth of St. John's wort (Hypericum perforatum L.). Jpn Soc Agric Biol Environ Eng Sci 18:225-229. doi:10.2525/shita.18.225 
  35. Nozue H., A, Shimada, Y. Taniguchi, and M. Nozue 2010, Improving the productivity of plants using an light equipped with a control module. Japanese Soc Agric Biol Environ Eng Sci 22:81-87. doi:10.2525/shita.22.81 
  36. Oh S.I., S.Y. Kim, J.H. Lee, and A.K. Lee 2018, Determination of antioxidant activity of edible calendula flowers by hot-air drying time. Flower Res J 26:202-208. doi:10.11623/frj.2018.26.4.05. 
  37. Paradiso R., and S. Proietti 2022, Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED systems. J Plant Growth Regul 41:742-780. doi:10.1007/s00344-021-10337-y 
  38. Park C.H., J.M. Kim, S.M. Yoon, J.C. Yang, Y.J. Kim, S.Y. Kim, and J.Y. Jung 2021, Flower bud development and growth characteristics of four Allium species native to Korea in response to photoperiods. Flower Res J 29:11-17. doi:10.11623/frj.2021.29.1.02 
  39. Park E.S., S.M. Kim, and J.S. Moon 2017, The effects of marigold (Tagetes L.) extract and calendula (Calendula officinalis L.) extract on collagen growth and MMP-1 expression in human dermal fibroblasts. J Oil Appl Sci 34:769-777. doi:10.12925/jkocs.2017.34.4.769 
  40. Park G.H., and J.H. Lee 2021, Analysis of dynamics of stem elongation on standard cut chrysanthemum 'Baekma' under different photoperiodism. Hortic Sci Technol 39:460-768. doi:10.7235/HORT.20210067 
  41. Park J.W., and W.S. Kim 2017, Effect of UV-B radiation on antioxidation in petals of edible flower pansy. Flower Res J 25:24-28. doi:10.11623/frj.2017.25.1.04 
  42. Park S.K., and Y.L. Kim 2020, Effect of light emitting diode (LED) light on growth and flowering of pot-mum 'Orange Egg' during cultivation. Flower Res J 28:315-320. doi:10.11623/frj.2020.28.4.10 
  43. Park S.K., and Y.L.Kim 2021, Effect of shading and temperature on growth and flowering response in the potted chrysanthemum 'Orange Egg'. Flower Res J 29:287-293. doi:10.11623/frj.2021.29.4.10 
  44. Park Y.J., H.J. Kim, K.S. Byun, S.J. Kim, S.Y. Chon, B.G. Heo, S.S. Lee, and S.H. Park 2005, Kinds and characteristics of edible flowers market as food material in Korea. Korean Soc Comm Liv Sci 16:47-57. 
  45. Proietti S., V. Scariot, S. de Pascale, and R. Paradiso 2022, Flowering mechanisms and environmental stimuli for flower transition: bases for production scheduling in greenhouse floriculture. Plants 11:432. doi:10.3390/plants11030432 
  46. Runkle E. 2002, Controlling photoperiod. Growers 101:90-93.
  47. Seo B.S., H.S. Pak, K.J. Lee, D.H. Choi, and B.W. Lee 2016, Modelling the effects of temperature and photoperiod on phenology and leaf appearance in chrysanthemum. Korean J Agric For Meteorol 18:253-263. doi:10.5532/kjafm.2016.18.4.253 
  48. Shim K.B., B.I. Goo, M.N. Shin, and W.T. Jeon 2020, Effect of temperature and daylength on flowering and growth characteristics. Korean J Crop Sci 65:241-247. doi:10.7740/kjcs.2020.65.3.241 
  49. Siriamornpun S., O. Kaisoon, and N. Meeso 2012, Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J Funct Foods 4:757-766. doi:10.1016/j.jff.2012.05.002 
  50. Sul S.G., Y.T. Baek, and Y.Y. Cho 2022, Effects of light intensity, light quality and photoperiod for growth of perilla in a closed-type plant factory system. J Bio-Env Con 31:180-187. doi:10.12791/KSBEC.2022.31.3.180 
  51. Tsai S.S., and Y.C.A. Chang 2022, Plant maturity affects flowering ability and flower quality in Phalaenopsis, focusing on their relationship to carbon-to-nitrogen ratio. HortScience 57:191-196. doi:10.21273/hortsci16273-21 
  52. Yoo I.S., J.M. Park, and A.J. Kim 2021, Evaluation of the physicochemical activities of frequently consumed edible flower teas in Korea. Asian J Beauty Cosmetol 19:289-301. doi:10.20402/ajbc.2021.0173