DOI QR코드

DOI QR Code

Effects of Supplemental UV-A LED Radiation on Growth and Bioactive Compounds in Spinach

시금치에서 생장 및 생리활성물질에 대한 UV-A LED의 보광 효과

  • Da-Seul Choi (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Jin-Hui Lee (Department of Practice Arts Education, Jeonju National University of Education) ;
  • Myung-Min Oh (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
  • 최다슬 (충북대학교 축산.원예.식품공학부 원예학전공 ) ;
  • 이진희 (전주교육대학교 실과교육과 ) ;
  • 오명민 (충북대학교 축산.원예.식품공학부 )
  • Received : 2024.01.05
  • Accepted : 2024.01.26
  • Published : 2024.01.31

Abstract

A proper level of UV-A light treatment in terms of intensity, spectrum, and exposure duration is known to have a positive impact on plant growth, photosynthesis, and the biosynthesis of secondary metabolites. However, there are few studies investigating the physiological responses of spinach (Spinacia oleracea L.) to UV radiation. Hence, this study aimed to assess the effects of short-term UV-A radiation on the growth and bioactive compounds of spinach. Spinach seedlings were cultivated in a vertical farm module under the following environmental conditions: photosynthetic photon flux density 200 µmol·m-2·s-1, white LED, 12 h on/off, 20℃ air temperature, 70% relative humidity, and 500 µmol·mol-1 CO2 concentration. After 5 weeks of sowing, the seedlings were subjected to continuous UV-A (peak wavelength; 385 nm) irradiation at two different energy levels: 20 W·m-2 and 40 W·m-2 for 7 days. As a result, the UV-A20W treatment increased the shoot fresh and dry weights of spinach. However, there were no significant differences observed in photosynthetic parameters between the UV-A treatments and the control. The maximum quantum efficiency of photosystem II (Fv/Fm) consistently decreased across all UV-A treatments for 7 days in UV-A treatments. Additionally, the total phenolic content and antioxidant capacity increased in the UV-A20W treatment at 7 days of treatment as well as the total flavonoid content significantly increased at 5 and 7 days of treatment. These findings suggest that supplemental UV-A LED radiation can enhance the growth and quality of spinach cultivated in closed type plant production systems such as vertical farms.

본 연구에서는 단기간의 UV-A 조사가 시금치(Spinacia oleracea L.)의 생장과 생리활성물질에 미치는 영향을 평가하였다. 시금치 묘는 200µmol·m-2·s-1 PPFD, white LED, 광주기 12시간, 온도 20℃, 상대습도 70%, 이산화탄소 농도 500µmol·mol-1의 수직농장 모듈에서 재배되었다. 파종 후 5주된 묘는 7일 동안 20W·m-2와 40W·m-2의 두 가지 에너지 수준에서 연속적으로 UV-A(피크파장: 385nm) 조사한 후 생육 특성, 광합성 파라미터, 이미지 형광, 총 페놀 함량, 항산화도, 그리고 총 플라보노이드 함량을 분석하였다. 결과적으로, UV-A20W 처리는 시금치의 생체중과 건물중을 증가시켰다. 하지만, UV-A 처리구와 대조구 사이의 광합성 파라미터에는 유의한 차이가 나타나지 않았다. 광계II의 최대양자수율(Fv/Fm)은 모든UV-A 처리에서 7일동안 지속적으로 감소했다. 또한, UV-A20W 처리에서 식물체당 총 페놀 함량과 항산화도는 처리 7일째 증대되었으며, 총 플라보노이드 함량은 처리 5일째부터 유의적으로 증가하였다. 이러한 결과는 UV-A LED 보광이 수직농장과 같은 폐쇄형 식물 생산 시스템에서 재배되는 시금치의 생장과 품질을 향상시킬 수 있음을 시사한다.

Keywords

References

  1. Ainsworth E.A., and K.M. Gillespie 2007, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875-877. doi:10.1038/nprot.2007.102
  2. Artes-Hernandez F., N. Castillejo, and L. Martinez-Zamora 2022, UV and visible spectrum led lighting as abiotic elicitors of bioactive compounds in sprouts, microgreens, and baby leaves-A comprehensive review including their mode of action. Foods 11:265. doi:10.3390/foods11030265
  3. Artes-Hernandez F., V.H. Escalona, P.A. Robles, G.B. Martinez-Hernandez, and F. Artes 2009, Effect of UV-C radiation on quality of minimally processed spinach leaves. J Sci Food Agric 89:414-421. doi:10.1002/jsfa.3460
  4. Baker N.R., and E. Rosenqvist 2004, Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. doi:10.1093/jxb/erh196
  5. Bantis F., M. Fotelli, Z.S. Ilic, and A. Koukounaras 2020, Physiological and phytochemical responses of spinach baby leaves grown in a PFAL system with leds and saline nutrient solution. Agriculture 10:574. doi:10.3390/agriculture10110574
  6. Beiranvandi M., N. Akbari, A. Ahmadi, H. Mumivand, and F. Nazarian 2022, Biochar and super absorbent polymer improved growth, yield, and phytochemical characteristics of Satureja rechingeri Jamzad in water-deficiency conditions. Ind Crops Prod 183:114959. doi:10.1016/j.indcrop.2022.114959
  7. Bian Z.H., Q.C. Yang, and W.K. Liu 2015, Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agric 95:869-77. doi:10.1002/jsfa.6789
  8. Brazaityte A., A. Virsile, J. Jankauskiene, S. Sakalauskiene, G. Samuoliene, R. Sirtautas, A. Novickovas, L. Dabasinskas, J. Miliauskiene, and V. Vastakaite 2015, Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int Agrophys 291:13-22. doi:10.1515/intag-2015-0004
  9. Cerovic Z.G., A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya 2002, The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663-1676. doi:10.1046/j.1365-3040.2002.00942.x
  10. Chen Y., T. Li, Q. Yang, Y. Zhang, J. Zou, and Z. Bian 2019, UVA radiation is beneficial for yield and quality of indoor cultivated lettuce. Front Plant Sci 10:1563-1572. doi:10.3389/fpls.2019.01563
  11. Choi D.S., T.K.L. Nguyen, and M.M. Oh 2022, Growth and biochemical responses of kale to supplementary irradiation with different peak wavelengths of UV-A light-emitting diodes. Hortic Environ Biotechnol 63:65-76. doi:10.1007/s13580-021-00377-4
  12. Coohill T.P. 1989, Ultraviolet action spectra (280 to 380 nm) and solar effectiveness spectra for higher plants. Photochem Photobiol 50:451-457. doi:10.1111/j.1751-1097.1989.tb05549.x
  13. Escalona V.H., E. Aguayo, G.B. Martinez-Hernandez, and F. Artes 2010, UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol Technol 56:223-231. doi:10.1016/j.postharvbio.2010.01.008
  14. Fitzner M., M. Schreiner, and S. Baldermann 2023, Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic Salicornia europaea. J Plant Physiol 291:154124. doi:10.1016/j.jplph.2023.154124
  15. Gao M., R. He, R. Shi, Y. Li, S. Song, Y. Zhang, W. Su, and H. Liu 2021, Combination of selenium and UVA radiation affects growth and phytochemicals of broccoli microgreens. Molecules 26:4646. doi:10.3390/molecules26154646
  16. Gao W., D. He, F. Ji, S. Zhang, and J. Zheng 2020, Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 10:1082. doi:10.3390/agronomy10081082
  17. Grant R.H. 1997, Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26-40. doi:10.1007/bf02439408
  18. He R., Y. Li, S. Ou, M. Gao, Y. Zhang, S. Song, and H. Liu 2021a, Regulation of growth and main health-promoting compounds of Chinese kale baby-leaf by UV-A and FR light. Front Plant Sci 12:799376. doi:10.3389/fpls.2021.799376
  19. He R., Y. Zhang, S. Song, W. Su, Y. Hao, and H. Liu 2021b, UV-A and FR irradiation improves growth and nutritional properties of lettuce grown in an artificial light plant factory. Food Chem 345:128727. doi:10.1016/j.foodchem.2020.128727
  20. Hideg E., M.A. Jansen, and A. Strid 2013, UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?. Trends Plant Sci 18:107-115. doi:10.1016/j.tplants.2012.09.003
  21. Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1-37.
  22. Hollosy F. 2002, Effects of ultraviolet radiation on plant cells. Micron 33:179-197. doi:10.1016/S0968-4328(01)00011-7
  23. Ibdah M., A. Krins, H.K. Seidlitz, W. Heller, D. Strack, and T. Vogt 2002, Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25:1145-1154. doi:10.1046/j.1365-3040.2002.00895.x
  24. Jang S.N., G.O. Lee, H.S. Sim, J.S. Bae, A.R. Lee, D.Y. Cho, K.M. Cho, and K.H. Son 2022, Effect of pre-harvest irradiation of UV-A and UV-B LED in ginsenosides content of ginseng sprouts. J Bio-Env Con 31:28-34. doi:10.12791/KSBEC.2022.31.1.028
  25. Jenkins G.I., I. Givens, S. Baxter, A.M. Minihane, and E. Shaw 2008, Environmental regulation of flavonoid biosynthesis, In I Givens, S Baxter, AM Minihane, E Shaw, eds, Health Benefits of Organic Food: Effects of the Environment. CABI, Wallingford, UK, pp 240-262.
  26. Jordan B.R. 2002, Molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909-916. doi:10.1071/FP02062
  27. Kang S., J.E. Kim, S. Zhen, and J. Kim 2022, Mild-intensity UV-A radiation applied over a long duration can improve the growth and phenolic contents of sweet basil. Front Plant Sci 13:858433. doi:10.3389/fpls.2022.858433
  28. Kasim M.U., and R. Kasim 2017, Yellowing of fresh-cut spinach (Spinacia oleracea L.) leaves delayed by UV-B applications. Inf Process Agric 4:214-219. doi:10.1016/j.inpa.2017.05.006
  29. Lee J. H., S. Tanaka, and E. Goto 2022, Growth and biosynthesis of phenolic compounds of canola (Brassica napus L.) to different ultraviolet (UV)-B wavelengths in a plant factory with artificial light. Plants 11:1732. doi:10.3390/plants11131732
  30. Lee J.H., M.C. Kwon, E.S. Jung, C.H. Lee, and M.M. Oh 2019a, Physiological and metabolomic responses of kale to combined chilling and UV-A treatment. Int J Mol Sci 20:4950. doi:10.3390/ijms20194950
  31. Lee J.H., M.M. Oh, and K.H. Son 2019b, Short-term ultraviolet (UV)-A light-emitting diode (LED) radiation improves biomass and bioactive compounds of kale. Front Plant Sci 10:1042. doi:10.3389/fpls.2019.01042
  32. Lee J.W., S.Y. Park, and M.M. Oh 2021, Supplemental radiation of ultraviolet-A light-emitting diode improves growth, antioxidant phenolics, and sugar alcohols of ice plant. Hortic Environ Biotechnol 62:559-570. doi:10.1007/s13580-021-00340-3
  33. Li Y., Y. Zheng, D. Zheng, Y. Zhang, S. Song, W. Su, and H. Liu 2020, Effects of supplementary blue and UV-A LED lights on morphology and phytochemicals of Brassicaceae baby-leaves. Molecules 25:5678. doi:10.3390/molecules25235678
  34. Lucas R.M., M. Norval, R.E. Neale, A.R. Young, F.R. de Gruijl, Y. Takizawa, and J.C. van der Leun 2015, The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem Photobiol Sci 14:53-87. doi:10.1039/c4pp90033b
  35. Mantha S.V., G.A. Johnson, and T.A. Day 2001, Evidence from action and fluorescence spectra that UV-induced violet-blue-green fluorescence enhances leaf photosynthesis. Photochem Photobiol 73:249-256. doi:10.1562/0031-8655(2001)0730249EFAAFS2.0.CO2
  36. Mao P., F. Duan, Y. Zheng, and Q. Yang 2021, Blue and UV-A light wavelengths positively affected accumulation profiles of healthy compounds in pak-choi. J Sci Food Agric 101:1676-1684.
  37. Martinez-Sanchez A., J. Guirao-Martinez, J.A. Martinez, P. Lozano-Pastor, and E. Aguayo 2019, Inducing fungal resistance of spinach treated with preharvest hormetic doses of UV-C. LWT 113:108302. doi:10.1016/j.lwt.2019.108302
  38. McCree K.J. 1971, The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric For Meteorol 9:191-216. doi:10.1016/0002-1571(71)90022-7
  39. McCree K.J. 1972, Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric For Meteorol 10:443-453. doi:10.1016/0002-1571(72)90045-3
  40. Miao C., S. Yang, J. Xu, H. Wang, Y. Zhang, J. Cui, H. Zhang, H. Jin, P. Lu, L. He, J. Yu, Q. Zhou, and X. Ding 2023, Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 12:3337. doi:10.3390/plants12183337
  41. Miller N.J., and C.A. Rice-Evans 1996, Spectrophotometric determination of antioxidant activity. Redox Rep 2:161-171. doi:10.1080/13510002.1996.11747044
  42. Murchie E.H., and T. Lawson 2013, Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983-3998. doi:10.1093/jxb/ert208
  43. Neugart S., and M. Schreiner 2018, UVB and UVA as eustressors in horticultural and agricultural crops. Sci Hortic 234:370-381. doi:10.1016/j.scienta.2018.02.021
  44. Park S., E. Cho, J. An, B. Yoon, K. Choi, and E. Choi 2019, Plant growth and ascorbic acid content of Spinacia oleracea grown under different light-emitting diodes and ultraviolet radiation light of plant factory system. J Bio-Env Con 28:1-8. doi:10.12791/KSBEC.2019.28.1.1
  45. Park S.Y., M.Y. Lee, C.H. Lee, M.M. Oh 2020, Physiologic and metabolic changes in Crepidiastrum denticulatum according to different energy levels of UV-B radiation. Int J Mol Sci 21:7134. doi:10.3390/ijms21197134
  46. Proestos C. 2018, Superfoods: Recent data on their role in the prevention of diseases. Current Res Nutrition Food Sci J 6:576-593. doi:10.12944/CRNFSJ.6.3.02
  47. Qin H., Y. Xu, B. Liu, Y. Gao, Y. Zheng, and Q. Li 2023, UV-A supplement improved growth, antioxidant capacity, and anthocyanin accumulation in purple lettuce (Lactuca sativa L.). Horticulturae 9:634. doi:10.3390/horticulturae9060634
  48. Samuoliene G., A. Virsile, J. Miliauskiene, P. Haimi, K. Lauzike, J. Jankauskiene, A. Novickovas, A. Kupcinskiene, and A. Brazaityte 2020, The photosynthetic performance of red leaf lettuce under UV-A irradiation. Agronomy 10:761. doi:10.3390/agronomy10060761
  49. Semenova N.A., Y.A. Proshkin, A.A. Smirnov, A.S. Dorokhov, A.S. Ivanitskikh, D.A. Burynin, A.A. Dorokhov, N.I. Uyutova, N.O. Chilingaryan 2023, The influence of the spectral composition and light intensity on the morphological and biochemical parameters of spinach (Spinacia oleracea L.) in vertical farming. Horticulturae 9:1130. doi:10.3390/horticulturae9101130
  50. Vastakaite-Kairiene V., A. Brazaityte, J. Miliauskiene, and E.S. Runkle 2022, Red to blue light ratio and iron nutrition influence growth, metabolic response, and mineral nutrients of spinach grown indoors. Sustainability 14:12564. doi:10.3390/su141912564
  51. Verdaguer D., M.A. Jansen, L. Llorens, L.O. Morales, and S. Neugart 2017, UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72-81. doi:10.1016/j.plantsci.2016.11.014
  52. Virsile A., K. Lauzike, R. Sutuliene, A. Brazaityte, G. Kudirka, and G. Samuoliene 2023, Distinct impacts of UV-A light wavelengths on nutraceutical and mineral contents in green and purple basil cultivated in a controlled environment. Horticulturae 9:1168. doi:10.3390/horticulturae9111168
  53. Zhang Y., E. Kaiser, Y. Zhang, J. Zou, Z. Bian, Q. Yang, and T. Li 2020, UVA radiation promotes tomato growth through morphological adaptation leading to increased light interception. Env Exp Bot 176:104073. doi:10.1016/j.envexpbot.2020.104073