DOI QR코드

DOI QR Code

Comparison with Growth Characteristics of Korean Melon (Cucumis melo var. makuwa) Grafted Seedlings in a Container Type Farm with LED Light and a Greenhouse under High Temperature Conditions

인공광 기반 컨테이너 육묘 시스템과 고온 조건의 플라스틱 온실 육묘에서 참외 접목묘 생육 특성 비교

  • Wook Jin Song (Department of Horticultural Science, Graduate School of Mokpo National University) ;
  • Hee Woong Goo (Global Smart Agribusiness Research Center) ;
  • Gyu Won Lee (Department of Horticultural Science, Graduate School of Mokpo National University) ;
  • Hyun Mun Kim (Department of Horticultural Science, Graduate School of Mokpo National University) ;
  • Kyoung Sub Park (Department of Horticultural Science, Mokpo National University)
  • 송욱진 (목포대학교 대학원 원예학과) ;
  • 구희웅 (글로벌스마트농업연구센터) ;
  • 이규원 (목포대학교 대학원 원예학과) ;
  • 김현문 (목포대학교 대학원 원예학과) ;
  • 박경섭 (목포대학교 자연과학대학 원예과학과)
  • Received : 2023.11.22
  • Accepted : 2024.01.17
  • Published : 2024.01.31

Abstract

This study was carried out to analyze the growth of grafted seedlings produced in a container-type farm system and a greenhouse to stably produce high-quality seedlings. For 14 days after graft-taking, the characteristics of korean melon grafted seedlings were compared by container farm and greenhouse. The container seedling system maintained a stable day/night temperature (25/20℃), relative humidity (70%), and light environment (PPFD 200µmol·m-2·s-1, photoperiod (16/8h). The difference between day and night temperature (DIF) was relatively large, with a mean temperature of 28.1/15.4℃ in the high-temperature greenhouse. Plant height of the korean melon seedling was longer in the greenhouse than in the closed seedling system, and the average SPAD value was 30.5 and 41.1 in the greenhouse and closed seedling system, respectively. To calculate the compactness of the graft seedlings, the shoot dry weight was divided by the plant height, and the value was 44.9±2.64 mg/cm and 24.4±1.56 mg/cm in the closed seedling system and the greenhouse treatment, respectively, 7 days after graft-taking. To produce high-quality seedlings during high-temperature or low-photo periods, it will be necessary to analyze the key factors that affect growth characteristics and transplanting growth and to verify the effects of the closed seedling system based on post-transplanting growth and yield.

본 연구의 목적은 컨테이너 육묘 시스템을 활용한 참외 접목묘의 안정적인 생산 가능성을 평가하는 것이었다. 이를 위해, 컨테이너 육묘 시스템과 고온 조건의 플라스틱 온실에서 육묘한 접수와 대목, 접목묘의 생육을 비교 분석하였다. 접목활착 후 육묘 환경에 따른 참외 접목묘의 생육과 묘소질을 0일, 4일, 7일, 11일, 14일째에 비교하였다. 컨테이너 육묘 시스템에서는 주야간 온도를 25/20℃, 상대습도를 70%로 설정하여 재배기간 동안 안정적으로 유지하였으며, 플라스틱 온실 내의 주야간 평균온도는 28.1/15.4℃로 주야간 온도차(DIF)가 더 크게 나타났다. 조사기간 동안 참외 접목묘의 초장은 플라스틱 온실 육묘 처리구에서 컨테이너 육묘 시스템 처리구보다 더 길게 나타났다. 참외 접목묘 조직의 충실도는 지상부 건물 중을 초장으로 나누어 계산하였다. 육묘장에서 접목한 묘는 접목 후 7-10일 경과하여 활착이 완료되고 초장이 10cm 내외일 때 출하하여 정식에 이용되게 된다. 본 연구에서 접목활착 후 7일째에 컨테이너 육묘 시스템에서 재배된 묘의 충실도는 44.9±2.64mg/cm으로 나타났으며, 플라스틱 온실 육묘 처리구에서는 24.4±1.56mg/cm로 나타났다. SPAD 평균은 플라스틱 온실 육묘에서 30.5, 컨테이너 육묘 시스템에서 41.1로 측정되었다. 이러한 결과는 컨테이너 육묘 시스템의 활용이 고온기 또는 저일조 시기와 같은 육묘 환경에서도 고품질 모종을 안정적으로 생산할 수 있는 것을 확인하였고, 인공광을 이용한 육묘 시스템의 활용 범위가 앞으로 더 확대될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421008-04).

References

  1. An S.W., H.J. Lee, H.S. Shim, S.R. An, S.T. Kim, and S.K. Kim 2021, Profiles of environmental parameters in a plant factory with artificial lighting and evaluation on growth of cucumber seedlings. J Bio-Environ Con 30:126-132. doi:10.12791/KSBEC.2021.30.2.126
  2. Cha M.K., J.S. Kim, J.H. Shin, J.E. Son, and Y.Y. Cho 2014, Practical design of an artificial light-used plant factory for common ice plant (Mesembryanthemum crystallinum L.). J Bio-Environ Con 23(4):371-375. doi:10.12791/KSBEC.2014.23.4.371
  3. Cho I.H., W.M. Lee, K.B. Kwan, Y.H. Woo, and K.H. Lee 2009, Stable production technique of paprika (Capsicum annuum L.) by hydrogen peroxide treatment at summer. J Bio-Environ Con 18:297-301.
  4. Heuvelink E., and M. Dorais 2005, Crop growth and yield. In E Heuvelink, ed, Tomatoes. CABI Publishing, UK, pp 85-144. doi:10.1079/9780851993966.0085
  5. Jang Y.A., H.J. Lee, C.S. Choi, Y.C. Um, and S.G. Lee 2014, Growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity and plug cell size under an artificial lighting condition. J Bio-Environ Con 23:383-390. doi:10.12791/KSBEC.2014.23.4.383
  6. Jang Y.A., J.H. Moon, J.W. Lee, S.Y. Kim, and C.H. Chun 2009, The graft-take and growth of grafted peppers (Capsicum annuum L.) affected by temperature, relative humidity, and light conditions during healing and acclimatization. J BioEnviron Con 18:385-392.
  7. Jeong H.W., H.R. Lee, H.M. Kim, H.M. Kim, H.S. Hwang, and S.J. Hwang 2020a, Using light quality for growth control of cucumber seedlings in closed-type plant production system. Plants 9(5):639. doi:10.3390/plants9050639
  8. Jeong H.W., H.R. Lee, H.S. Hwang, E.B. Kim, and S.J. Hwang 2020b, Growth suppression of tomato plug seedlings as affected by material type for brushing stimulation. J BioEnviron Con 29:313-319. doi:10.12791/KSBEC.2020.29.4.313
  9. Kim H.G., J.S. Lee, and Y.H. Kim 2018, Chlorophyll fluorescence, chlorophyll content, graft-taking, and growth of grafted cucumber seedlings affected by photosynthetic photon flux of led lamps. J Bio-Environ Con 27:231-238. doi:10.12791/KSBEC.2018.27.3.231
  10. Kim Y.H., C.S. Kim, J.W. Lee, and S.G. Lee 2001, Effect of vapor pressure deficit on the evapotranspiration rate and graft-taking of grafted seedling population under artificial lighting. J Bio-Environ Con 10:232-236.
  11. Korean Statistical Information Service (KOSIS) 2021, Grafted seedling and seedling ratio production rate of vegetable seedlings by major crops of seedling companies. https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114052_B24&vw_cd=MT_ZTITLE&list_id=K1_36_002&seqNo
  12. Kwak Y.R.N., and S.W. An 2021, Changes in growth of watermelon scions and rootstocks grown under different air temperature and light intensity conditions in a plant factory with artificial lighting. J Bio-Environ Con 30:133-139. doi:10.12791/KSBEC.2021.30.2.133
  13. Lee J.E., Y.S. Shin, H.W. Do, J.D. Cheung, and Y.D Kang. 2016, Effect of Seedling Quality and Growth after Transplanting of Korean Melon Nursed under LED light Sources and Intensity. J Bio-Environ Con 25:294-301. doi:10.12791/KSBEC.2016.25.4.294
  14. Lee J.W., K.Y. Kim, and Y.M. Yu 2001, Effect of nutrient solution strength, seedling age, and container size on seedling quality and yield of 'Spirit' colored bell pepper (Capsicum annuum L.). J Hortic Sci Biotechnol 42:300-304.
  15. Lim K.B., K.C. Son, and J.D. Chung 1997, Influences of DIF on growth and development of plug seedlings of Lycopersicon esculentum before and after transplanting. J Bio-Environ Con 6:34-42.
  16. Okabe K. 2004, Development and application of closed transplant production systems. Proceedings of the Korean Society for Bio-Environment Control Conference, pp 127-138.
  17. Rural Development Administration (RDA) 2012, Analysis standard for research in agricultural science and technology. RDA, Jeonju, Korea, pp 503-504.
  18. Shim K.M., Y.S. Kim, M.P. Jung, S.C. Kim, S.H. Min, and K.H. So 2013, Agro-climatic zonal characteristics of the frequency of abnormal air temperature occurrence in South Korea. Clim Chang Res 4:189-199. doi:10.5532/KJAFM.2014.16.1.83
  19. Shin Y.S., J.E. Lee, H.W. Do, H. Chun, and D.S. Chung 2018, Changes in air temperature of plastic house as affected by light control film and their impacts on Korean melon yield. J Bio-Environ Con 27:80-85. doi:10.12791/KSBEC.2018.27.1.80
  20. Shin Y.S., Y.J. Seo, C.D. Choi, S.D. Park, and B.S. Park 2006, Effect on development and activity of roots by rootstock sort of Oriental melon (Cucumis melo L. var. makuwa Mak). J Bio-Environ Con 15:352-357.
  21. Um Y.C., T.C. Seo, Y.A. Jang, S.G. Lee, J.G. Lee, C.S. Choi, and S.S. Oh 2011, Effects of some environment-friendly farming materials on growth of pepper and tomato seedlings under low solar radiation conditions. J Bio-Environ Con 20:269-276.
  22. Went F.W. 1953, The effect of temperature on plant growth. Annu Rev Plant Physiol 4:347-362. doi:10.1146/annurev.pp.04.060153.002023