DOI QR코드

DOI QR Code

Synthesis of substituted urea or benzimidazolone using 1,1'- carbonyldiimidazole and substituted anilines

  • Kyounghoon Lee (Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University)
  • Received : 2024.07.23
  • Accepted : 2024.08.07
  • Published : 2024.09.20

Abstract

1,1'-carbonyldiimidazole (CDI) is a versatile reagent that can be used for synthesizing a variety of organic compounds containing carbonyl functional groups. The reactivity of CDI with two ortho-substituted anilines was tested and characterized with analytic techniques such as NMR, IR, and ESIMS. A reaction of CDI with two equivalents of disubstituted aniline (N1,N1-diethylbenzene-1,2-diamine) formed a urea compound, 1,3-bis(2-(diethylamino)phenyl)urea (1). On the other hand, a reaction with one equivalent of mono-substituted aniline (tert-butyl (2-aminophenyl)carbamate) formed a substituted benzimidazolone, tert-butyl 2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (2). These results demonstrated that a singly substituted aniline prefers an intramolecular ring formation while an N,N-doubly-substituted aniline prefers a urea formation.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (RS-2023-00245147).

References

  1. H. A. Staab, Justus Liebigs Ann. Chem. 609, 75 (1957) 
  2. H. A. Staab, Justus Liebigs Ann. Chem. 609, 83 (1957) 
  3. H. A. Staab, Angew. Chem., Int. Ed. Engl 1, 351 (1962) 
  4. G. W. Anderson, R. Paul, J. Am. Chem. Soc. 80, 4423 (1958) 
  5. R. Paul, G. W. Anderson, J. Am. Chem. Soc. 82, 4596 (1960) 
  6. J.-S. Suppo, G. Subra, M. Berges, Angew. Chem., Int. Ed. 53, 5389 (2014) 
  7. A. K. Saha, P. Schultz, H. Rapoport, J. Am. Chem. Soc. 111, 4856 (1989) 
  8. J. Gante, Angew. Chem., Int. Ed. Engl. 5, 315 (1966) 
  9. S. J. Connon, Chem. Commun. 22, 2499 (2008) 
  10. S. J. Connon, Chem. Eur. J. 12, 5418 (2006) 
  11. A. D. Jagtap, N. B. Kondekar, A. A. Sadani, J. -W. Chern, Curr. Med. Chem., 24, 622 (2017) 
  12. R. Palin, J. K. Clark, L. Evans, A. K. Houghton, P. S. Jones, A. Prosser, G. Wishart, K. Yoshiizumi, Bioorg. Med. Chem. 16, 2829 (2008) 
  13. A.-M. Monforte, P. Logoteta, L. De Luca, N. Iraci, S. Ferro, G. Maga, E. De Clercq, C. Pannecouque, A. Chimirri, Bioorg. Med. Chem. 18, 1702 (2010) 
  14. N. Pribut, A. E. Basson, W. A. L. van Otterlo, D. C. Liotta, S. C. Pelly, ACS Med. Chem. Lett. 10, 196 (2019) 
  15. B. R. Bellenie, K. J. Cheung, A. Varela, O. A. Pierrat, G. W. Collie, G. M. Box, M. D. Bright, S. Gowan, A. Hayes, M. J. Rodrigues, K. N. Shetty, M. Carter, O. A. Davis, A. T. Henley, P. Innocenti, L. D. Johnson, M. Liu, S. de Klerk, Y.-V. Le Bihan, M. G. Lloyd, P. C. McAndrew, E. Shehu, R. Talbot, H. L. Woodward, R. Burke, V. Kirkin, R. L. M. van Montfort, F. I. Raynaud, O. W. Rossanese, S. Hoelder, J. Med. Chem. 63, 4047 (2020) 
  16. J. H. Oh, J. H. Lee, S. K. Kim, J. Kor. Magn. Reson. Soc. 25, 45 (2021) 
  17. N. J. Heo, H. J. Han, J. Choi, S. K. Kim, J. Kor. Magn. Reson. Soc. 26, 40 (2022) 
  18. P. Ren, O. Vechorkin, Z. Csok, I. Salihu, R. Scopelliti, X. Hu Dalton Trans. 40, 8906 (2011) 
  19. P. Bana, A. Szigetvari, J. Koti, J. Eles, I. Greiner React. Chem. Eng. 4, 652 (2019)