DOI QR코드

DOI QR Code

완충재 내 무선 통신 효율 실험 및 THM 통합 센서 시스템 개념 설계

Experiments for Efficiency of a Wireless Communication in a Buffer Material and Conceptual Design of THM Integrated Sensor System

  • 홍창호 (한국원자력연구원) ;
  • 최지욱 (한국원자력연구원) ;
  • 김진섭 (한국원자력연구원) ;
  • 강신항 (한남대학교)
  • Chang-Ho Hong (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jiwook Choi (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jin-Seop Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Sinhang Kang (Hannam University)
  • 투고 : 2024.07.11
  • 심사 : 2024.07.30
  • 발행 : 2024.08.31

초록

본 연구는 고준위 방사성 폐기물 심층 처분시설의 장기적 건전성 모니터링을 위한 무선 통신 시스템을 개발하는 것을 목표로 한다. 기존의 유선 센서는 전원 공급과 데이터 전송을 위해 전선을 사용함으로써 완충재의 품질 저하 및 관리의 어려움을 초래할 수 있다. 이를 해결하기 위해 본 연구에서는 무선 통신 시스템의 도입을 제안하였으며, WiFi, ZigBee, LoRa 등의 모듈을 사용하여 벤토나이트 내 수신 감도를 비교 분석하였다. 벤토나이트의 건조밀도 증가와 송수신기 간 거리 증가에 따라 수신 감도가 감소하는 경향을 확인하였으며, 저주파수 대역에서 적은 신호 감쇠를 확인하였다. 이를 바탕으로 무선 네트워크 기반의 THM 통합 무선 센서 시스템의 개념 설계를 제안하였다. 이는 처분 구조물의 장기 건전성 모니터링을 위한 기초자료로 활용 가능할 것으로 기대된다.

This study aims to develop a wireless communication system for long-term monitoring of high-level radioactive waste disposal facilities. Conventional wired sensors can lead to a deterioration in buffer quality and management difficulties due to the use of cables for power supply and data transmission. This study proposes the adoption of a wireless communication system and compares the received signal strengths within bentonite using modules such as WiFi, ZigBee, and LoRa. Increases in dry density of bentonite and distance between transceivers led to reduced received signal strength. Additionally, using the low-frequency band exhibited less signal attenuation. Based on these findings, a conceptual design for a wireless network-based THM integrated sensor system was proposed. Results of this study can be used as foundational data for long-term monitoring of disposal facility.

키워드

과제정보

이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행된 연구사업입니다(2022M2E3A3015608 & 2021M2E1A1085193).

참고문헌

  1. Anastasi, G., Falchi, A., Passarella, A., Conti, M., and Gregori, E., 2004, Performance measurements of motes sensor networks, Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems.
  2. Bannister, K., Giorgetti, G., and Gupta, S. K., 2008, Wireless sensor networking for hot applications: Effects of temperature on signal strength, data collection and localization, Proceedings of the 5th workshop on embedded networked sensors (HotEmNets' 08).
  3. Boano, C.A., Tsiftes, N., Voigt, T., Brown, J., and Roedig, U., 2009, The Impact of Temperature on Outdoor Industrial Sensornet Applications, IEEE Transactions on Industrial Informatics, 6(3), 451-459.
  4. Cuss, R.J., Harrington, J.F., Noy, D.J., Graham, C.C., and Sellin, P., 2014, Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system; results from three gas injection tests in the large scale gas injection test (Lasgit), Applied Clay Science, 102, 81-92.
  5. Guidara, A., Fersi, G., Derbel, F., and Jemaa, M.B., 2018, Impacts of Temperature and Humidity variations on RSSI in indoor Wireless Sensor Networks, Procedia Computer Science, 126, 1072-1081.
  6. Joseph, A., 2016, Force of Atmospheric Humidity on (UHF) Radio Signal, International Journal of Scientific Research Engineering & Technology, 5(2), 56-59.
  7. Kang, S., Kim, J.T., Lee, C., and Kim, J.S., 2021, Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer, Tunnel and Underground Space, 31(5), 333-359.
  8. Kim, S.H., Lee, S., and Hwang, K.S., 2012, Design of Wireless Underground Sensor System Using Magnetic Field Communication, Journal of the Institute of Electronics and Information Engineers, 49(11), 97-102.
  9. Kim, S.H., Won, Y.J., Hwang, K.S., Lim, S.O., and Oh, Y.S., 2010, A study on the characteristics of magnetic field for wireless sensor network, 2010 International Conference on Information and Communication Technology Convergence (ICTC), pp. 245-246.
  10. Kim, T., Lee, C., Kim, J.W., Kang, S., Kwon, S., Kim, K.I., Park, J.W., Park, C.H., and Kim, J.S., 2021, Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermo-hydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste, Tunnel and Underground Space, 31(3), 167-183.
  11. Lee, J., Kim, I., Ju, H., Choi, H., and Cho, D., 2020, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea, Journal of Nuclear Fuel Cycle and Waste Technology, 18(S), 1-19.
  12. Lee, K.K., 2017, 지중 무선 센서 시스템 기술동향. The Korean Institute of Electrical Engineers, 66(9), 27-34.
  13. Li, L., Vuran, M.C., and Akyildiz, F., 2007, Characteristics of underground channel for wireless underground sensor networks, The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, pp. 92-99.
  14. Luomala, J., and Hakala, I., 2015, Effects of temperature and humidity on radio signal strength in outdoor wireless sensor networks, Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, pp. 1247-1255.
  15. Mo, L., and Zhang, H., 2007, RFID Antenna Near the Surface of Metal, 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, pp. 803-806.
  16. Moridi, M.A., Sharifzadeh, M., Kawamura, Y., and Jang, H.D., 2018, Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments), Tunnelling and Underground Space Technology, 73, 127-138.
  17. Yoon, S.U., Ghazanfari, E., Cheng, L., Pamukcu, S., and Suleiman, M.T., 2012, Subsurface Event Detection and Classification Using Wireless Signal Networks, Sensors, 12(11), 14862-14886.
  18. Zhenzhong, L., Nezih, M., George, X., Yuu, O., Guocheng, L., and Dayan, B., 2011, Effects of temperature and humidity on UHF RFID performance, Smart Materials, Structures & NDT in Aerospace Conference.