Acknowledgement
This work was supported by the 2022 Yeungnam University Research Grant.
References
- Ani, A.I.C., Johar, S., Tawil, N.M., Abd Razak, M.Z. and Hamzah, N. (2015), "Building information modeling (BIM)-based building condition assessment: A survey of water ponding defect on a flat roof", J. Teknol., 75(9), 25-31. https://doi.org/10.11113/jt.v75.5222
- Anuar, M.Z.T., Sarbini, N.N., Ibrahim, I.S., Osman, M.H., Ismail, M. and Khun, M.C. (2019), "A comparative of building condition assessment method used in Asia countries: A review", IOP Conf Ser. Mater. Sci. Eng., 513(1), 012029. https://doi.org/10.1088/1757-899X/513/1/012029
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chaiyasarn, K., Buatik, A., Mohamad, H., Zhou, M., Kongsilp, S., and Poovarodom, N. (2022), "Integrated pixel-level CNN-FCN crack detection via photogrammetric 3D texture mapping of concrete structures", Automat. Constr., 140, 104388. https://doi.org/10.1016/j.autcon.2022.104388
- Chen, Z., Zhang, W., Huang, R., Dong, Z., Chen, C., Jiang, L. and Wang, H. (2022), "3D model-based terrestrial laser scanning (TLS) observation network planning for large-scale building facades", Automat. Constr., 144, 104594. https://doi.org/10.1016/j.autcon.2022.104594
- Cheng, J.C., Chen, W., Chen, K. and Wang, Q. (2020), "Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms", Automat. Constr., 112, 103087. https://doi.org/10.1016/j.autcon.2020.103087
- Choi, J., Yeum, C.M., Dyke, S.J. and Jahanshahi, M.R. (2018), "Computer-aided approach for rapid post-event visual evaluation of a building facade", Sensors, 18(9), 3017. https://doi.org/10.3390/s18093017
- El-Abbasy, M.S., Senouci, A., Zayed, T., Mirahadi, F. and Parvizsedghy, L. (2014), "Artificial neural network models for predicting condition of offshore oil and gas pipelines" Automat. Constr., 45, 50-65. https://doi.org/10.1016/j.autcon.2014.05.003
- Ensafi, M. and Thabet, W. (2021), "Challenges and gaps in facility maintenance practices", EPiC Series Built Environ., 2, 237-245. https://doi.org/10.29007/1h2j
- Falorca, J.F. and Lanzinha, J.C.G. (2020), "Facade inspections with drones-theoretical analysis and exploratory tests", Int. J. Build. Pathol. Adapt. https://doi.org/10.1108/IJBPA-07-2019-0063
- Gopalakrishnan, K., Gholami, H., Vidyadharan, A., Choudhary, A. and Agrawal, A. (2018), "Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model", Int. J. Traffic Transport Eng., 8(1), 1-14. http://dx.doi.org/10.7708/ijtte.2018.8(1).01
- Guo, J. and Wang, Q. (2022), "Human-related uncertainty analysis for automation-enabled facade visual inspection: A Delphi study", J. Manag. Eng., 38(2), 04021088. https://doi.org/10.1061/(ASCE)ME.1943-5479.0001000
- Kang, D. and Cha, Y.J. (2018), "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput.-Aided Civil Infrastr. Eng., 33(10), 885-902. https://doi.org/10.1111/mice.12375
- Kang, T.W., Kim, J.E. and Jung, T.S. (2016), "Study on 3D Reverse Engineering-based MEP Facility Management Improvement Method", Korea Inst. Constr. Technol., 17(8), 38-45. https://doi.org/10.5762/KAIS.2016.17.8.38
- Kim, Y.S. (2020), "Current Status of Old Buildings and Future Tasks", Nat. Assembly Res. Serv., 133, 1-13.
- Klapa, P. (2023), "Integration of terrestrial laser scanning and UAV-based photogrammetry for heritage Building Information Modeling", Geomatics, Landmanagement and Landscape. https://doi.org/10.15576/GLL/2023.1.23
- Kwan, A.K.H. and Ng, P.L. (2015), "Building diagnostic techniques and building diagnosis: The way forward", In: Engineering Asset Management-Systems, Professional Practices and Certification: Proceedings of the 8th World Congress on Engineering Asset Management (WCEAM 2013) & the 3rd International Conference on Utility Management & Safety (ICUMAS), pp. 849-862. https://doi.org/10.1007/978-3-319-09507-3_74
- Kwon, S.W. (2009), "Object Recognition and Modeling Technology Using Laser Scanning and BIM for Construction Industry", Rev. Architect. Build. Sci., 53(4), 31-38.
- Kwon, N.Y., Song, K.S., Ahn, Y.H., Park, M.S. and Jang, Y.J. (2020), "Maintenance cost prediction for aging residential buildings based on case-based reasoning and genetic algorithm", J. Build. Eng., 28, 101006. https://doi.org/10.1016/j.jobe.2019.101006
- Laefer, D.F., Truong-Hong, L., Carr, H. and Singh, M. (2014), "Crack detection limits in unit based masonry with terrestrial laser scanning", Ndt & E Int., 62, 66-76. https://doi.org/10.1016/j.ndteint.2013.11.001
- Lattanzi, D. and Miller, G.R. (2014), "3D scene reconstruction for robotic bridge inspection", J. Infrastr. Syst., 21(2). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000229
- Law, D.W., Holden, L. and Silcock, D. (2015), "The assessment of crack development in concrete using a terrestrial laser scanner (TLS)", Austral. J. Civil Eng., 13(1), 22-31. https://doi.org/10.1080/14488353.2015.1092635
- Liu, D., Chen, J., Hu, D. and Zhang, Z. (2019), "Dynamic BIM-augmented UAV safety inspection for water diversion project", Comput. Indust., 108, 163-177. https://doi.org/10.1016/j.compind.2019.03.004
- Marcus, G. (2018), "Deep learning: A critical appraisal", Technical Report; Departments of Psychology and Neural Science, New York University, New York, USA. https://doi.org/10.48550/arXiv.1801.00631
- Mukupa, W., Roberts, G.W., Hancock, C.M. and Al-Manasir, K. (2016), "A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures", Survey Review, 49(353), 99-116. https://doi.org/10.1080/00396265.2015.1133039
- Nex, F., Duarte, D., Tonolo, F.G. and Kerle, N. (2019), "Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions", Remote Sensing, 11(23), 2765. https://doi.org/10.3390/rs11232765
- Pan, N.H., Tsai, C.H., Chen, K.Y. and Sung, J. (2020), "Enhancement of external wall decoration material for the building in safety inspection method", J. Civil Eng. Manag., 26(3), 216-226. https://doi.org/10.3846/jcem.2020.11925
- Park, J. and Kim, S.G. (2020), "Structural Safety Management for Small-scale Buildings", The Seoul Institute, 1-115.
- Park, H.J., Ryu, J.R., Woo, S.H. and Choo, S.Y. (2016), "An improvement of the building safety inspection survey method using laser scanner and BIM-based reverse engineering", J. Architect. Inst. Korea Plann. Des., 32(12), 79-90. https://doi.org/10.5659/JAIK_PD.2016.32.12.79
- Park, H.J., Lee, S.H., Kim, E.J. and Choo, S.Y. (2017), "A proposal for building safety diagnosis processes using bim-based reverse engineering technology", Proceeding of the 22nd International conference of the Association for Computer-Aided Architectural Design Research in Asia, pp. 673-683.
- Perez, H., Tah, J.H. and Mosavi, A. (2019), "Deep learning for detecting building defects using convolutional neural networks", Sensors, 19(16), 3556. https://doi.org/10.3390/s19163556
- Luo, Q., Ge, B. and Tian, Q. (2019), "A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM", Constr. Build. Mater., 204, 244-254. https://doi.org/10.1016/j.conbuildmat.2019.01.150
- Rachmawati, T.S.N. and Kim, S. (2022), "Unmanned Aerial Vehicles (UAV) integration with digital technologies toward construction 4.0: A systematic literature review", Sustainability, 14(9), 5708. https://doi.org/10.3390/su14095708
- Sarker, M.M., Ali, T.A., Abdelfatah, A., Yehia, S. and Elaksher, A. (2017), "A cost-effective method for crack detection and measurement on concrete surface", Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci., 42, 237. https://doi.org/10.5194/isprs-archives-XLII-2-W8-237-2017
- Shi, Z. and Ergan, S. (2018), "Leveraging Point Cloud Data Detecting Building Facade Deterioration Caused by Neighboring Consturction", Tamap J. Eng. https://doi.org/10.29371/2018.3.66
- Shi, Z. and Ergan, S. (2020), "Towards Point Cloud and Model-Based Urban Facade Inspection: Challenges in the Urban Facade Inspection Process", In: Constuction Research Congress 2020 : Safety, Workforce, and Education, pp. 385-394.
- Silva, A., Dias, J.L., Gaspar, P.L. and de Brito, J. (2013), "Statistical models applied to service life prediction of rendered facades", Automat. Constr., 30, 151-160. https://doi.org/10.1016/j.autcon.2012.11.028
- Sousa, V., Matos, J.P. and Matias, N. (2014), "Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition", Automat. Constr., 44, 84-91. https://doi.org/10.1016/j.autcon.2014.04.004
- Tsai, Y.C.J. and Li, F. (2012), "Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3D laser technology", J. Transport. Eng., 138(5), 649-656. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000353
- Turkan, Y., Hong, J., Laflamme, S. and Puri, N. (2018), "Adaptive wavelet neural network for terrestrial laser scanner-based crack detection", Automat. Constr., 94, 191-202. https://doi.org/10.1016/j.autcon.2018.06.017
- Vasic, D., Ninkov, T., Bulatovic, V., Susic, Z. and Markovic, M. (2014), "Terrain mapping by applying unmanned aerial vehicle and lidar system for the purpose of designing in Serbia", FIG, Ingeo, pp. 217-222.
- Wu, J., Shi, Y., Wang, H., Wen, Y. and Du, Y. (2023), "Surface Defect Detection of Nanjing City Wall Based on UAV Oblique Photogrammetry and TLS", Remote Sens., 15(8), 2089. https://doi.org/10.3390/rs15082089
- Zhang, J., Qian, S. and Tan, C. (2023), "Automated bridge crack detection method based on lightweight vision models", Complex Intell. Syst., 9(2), 1639-1652. https://doi.org/10.1007/s40747-022-00876-6