DOI QR코드

DOI QR Code

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen (Guangdong University of Petrochem Technology, School of Science) ;
  • Y.M. Meng (Guangdong University of Petrochem Technology, School of Science) ;
  • Ruei-Yuan Wang (Guangdong University of Petrochem Technology, School of Science) ;
  • Timothy Chen (Guangdong University of Petrochem Technology, School of Science)
  • Received : 2022.08.13
  • Accepted : 2023.10.09
  • Published : 2024.04.25

Abstract

Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.

Keywords

References

  1. Adam, T.J. and Horst, P. (2014), "Experimental investigation of the very high cycle fatigue of GFRP (90/0)s cross-ply specimens subjected to high-frequency four-point bending", Compos Sci Technol., 101, 62-70. https://doi.org/10.1016/j.compscitech.2014.06.023
  2. Bai, X., He, Y. and Xu, M. (2021), "Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form", IEEE Transact. Aerosp. Electron. Syst., 57(5), 3279-3295. https://doi.org/10.1109/TAES.2021.3074204
  3. Battista, R.C. and Varela, W.D. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., Int. J., 23(5), 467-478. https://doi.org/10.12989/sss.2019.23.5.467
  4. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., Int. J., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249
  5. Cao, J., Bu, F., Wang, J., Bao, C., Chen, W. and Dai, K. (2023), "Reconstruction of full-field dynamic responses for large-scale structures using optimal sensor placement", J. Sound Vib., 554, 117693. https://doi.org/10.1016/j.jsv.2023.117693
  6. Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
  7. Casciati, F. (1997), "Checking the stability of a fuzzy controller for nonlinear structures", Comput.-Aided Civil Infrastr. Eng., 12, 205-215. https://doi.org/10.1111/0885-9507.00057
  8. Casciati, F and Casciati, S. (2018), "Amelioration and retrofitting of educational buildings", Earthq. Eng. Eng. Vib., 17(1), 47-51. https://doi.org/10.1007/s11803-018-0424-2
  9. Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: from the prototype to the model", Struct. Control Health Monitor., 16, 751-765. https://doi.org/10.1002/stc.328
  10. Casciati, F. and Faravelli, L. (2016), "Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach", Smart Struct. Syst., Int. J., 18(1), 1-16. https://doi.org/10.12989/SSS.2016.18.1.001
  11. Casciati, F., and Casciati, S. (2016), "Designing the control law on reduced-order models of large structural systems", Struct. Control Health Monitor., 23, 707-718. https://doi.org/10.1002/stc.1805
  12. Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), "Toward a paradigm for civil structural control", Smart Struct. Syst., Int. J., 14(5), 981-1004. https://doi.org/10.12989/sss.2014.14.5.981
  13. Casciati, F., Casciati, S., Elia, L. and Faravelli, L. (2016), "Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge", Smart Struct. Syst., Int. J., 17(3), 523-539. https://doi.org/10.12989/SSS.2016.17.3.523
  14. Chen, C.W. (2014a), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlinear Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8
  15. Chen, C.W. (2014b), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlinear Dyn., 76(1) 23-31. https://doi.org/10.1007/s11071-013-0869-9
  16. Chen, Y., Zhu, L., Hu, Z., Chen, S. and Zheng, X. (2022), "Risk propagation in multilayer heterogeneous network of coupled system of large engineering project", J. Manage. Eng., 38(3), 4022003. https://doi.org/10.1061/(ASCE)ME.1943-5479.0001022
  17. Chen, F., Zhang, H., Li, Z., Luo, Y., Xiao, X. and Liu, Y. (2023a), "Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks", Adv. Struct. Eng., 27(1), 35-50. https://doi.org/10.1177/13694332231213462
  18. Chen, W., Liu, W., Liang, H., Jiang, M. and Dai, Z. (2023b), "Response of storm surge and M2 tide to typhoon speeds along coastal Zhejiang Province", Ocean Eng., 270, 113646. https://doi.org/10.1016/j.oceaneng.2023.113646
  19. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D. and Chen, J. (2017), "Situation-aware dynamic service coordination in an IoT environment", IEEE/ACM Transact. Network., 25(4), 2082-2095. https://doi.org/10.1109/TNET.2017.2705239
  20. Claeys, J., Van Wittenberghe, J., De Baets, P. and De Waele, W. (2019), "Characterisation of a resonant bending fatigue test setup for pipes", Int. J. Sustain. Constr. Des., 2(3), 424-431. https://doi.org/10.21825/scad.v2i3.20541
  21. Dai, Z., Li, X. and Lan, B. (2023), "Three-Dimensional Modeling of Tsunami Waves Triggered by Submarine Landslides Based on the Smoothed Particle Hydrodynamics Method", J. Marine Sci. Eng., 11(10), 2015. https://doi.org/10.3390/jmse11102015
  22. Deng, E., Wang, Y., Zong, L., Zhang, Z. and Zhang, J. (2024), "Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies", Thin-Wall. Struct., 197, 111563. https://doi.org/10.1016/j.tws.2024.111563
  23. Du, W. and Wang, G. (2014), "Fully probabilistic seismic displacement analysis of spatially distributed slopes using spatially correlated vector intensity measures", Earthq. Eng. Struct. Dyn., 43(5), 661-679. https://doi.org/10.1002/eqe.2365
  24. Fang, Z., Liang, J., Tan, C., Tian, Q., Pi, D. and Yin, G. (2024a), "Enhancing Robust Driver Assistance Control in Distributed Drive Electric Vehicles through Integrated AFS and DYC Technology", IEEE Transact. Intell. Vehicl. https://doi.org/10.1109/TIV.2024.3368050
  25. Fang, Z., Wang, J., Liang, J., Yan, Y., Pi, D., Zhang, H. and Yin, G. (2024b), "Authority allocation strategy for shared steering control considering human-machine mutual trust level", IEEE Transact. Intell. Vehicl., 9(1), 2002-2015. https://doi.org/10.1109/TIV.2023.3300152
  26. Feng, J., Wang, W. and Zeng, H. (2024), "Integral sliding mode control for a class of nonlinear multiagent systems with multiple time-varying delays", IEEE Access, 12, 10512-10520. https://doi.org/10.1109/ACCESS.2024.3354030
  27. Gao, N., Han, Y., Li, N., Jin, S., & Matthaiou, M. (2024), "When physical layer key generation meets RIS: Opportunities, challenges, and road ahead", IEEE Wireless Commun. https://doi.org/10.1109/MWC.013.2200538
  28. Guo, C., Hu, J., Hao, J., Celikovsky, S. and Hu, X. (2023a), "Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions", Kybernetika, 59(3), 342-364. https://doi.org/10.14736/kyb-2023-3-0342
  29. Guo, C., Hu, J., Wu, Y. and Celikovsky, S. (2023b), "Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints", IEEE Transact. Circuits Syst. I: Regular Papers, 70(9), 3746-3758. https://doi.org/10.1109/TCSI.2023.3291700
  30. Hu, D., Li, Y., Yang, X., Liang, X., Zhang, K. and Liang, X. (2023), "Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning", Struct. Control Health Monitor., 2023, 3341788. https://doi.org/10.1155/2023/3341788
  31. Huang, C., Han, Z., Li, M., Wang, X. and Zhao, W. (2021), "Sentiment evolution with interaction levels in blended learning environments: Using learning analytics and epistemic network analysis", Austral. J. Edu. Technol., 37(2), 81-95. https://doi.org/10.14742/ajet.6749
  32. Khalatbarisoltani, A., Soleymani, M. and Khodadadi, M. (2019), "Online control of an active seismic system via reinforcement learning", Struct. Control Health Monit., 26, e2298. https://doi.org/10.1002/stc.2298
  33. Jiang, H., Wang, M., Zhao, P., Xiao, Z. and Dustdar, S. (2021), "A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs", IEEE/ACM Trans. Netw., 29(5), 2228-2241. https://doi.org/10.1109/TNET.2021.3084251
  34. Jiao, B., Qiao, J., Jia, S., Liu, R., Wei, X., Yun, S., Kong, Y., Ye, Y., Du, X., Yu, L. and Cong, B. (2024), "Low Stress TSV Arrays for High-Density Interconnection", Engineering. https://doi.org/10.1016/j.eng.2023.11.023
  35. Li, K., Ji, L., Yang, S., Li, H. and Liao, X. (2022), "Couple-group consensus of cooperative-competitive heterogeneous multiagent systems: A fully distributed event-triggered and pinning control method", IEEE Transact. Cybernet., 52(6), 4907-4915. https://doi.org/10.1109/TCYB.2020.3024551
  36. Li, J., Liu, Y. and Lin, G. (2023), "Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of largescale 3D base-isolated nuclear structures", Comput. Geotech., 162, 105669. https://doi.org/10.1016/j.compgeo.2023.105669
  37. Li, Y., Luo, Y., Wu, X., Shi, Z., Ma, S. and Yang, G. (2024), "Variational Bayesian Learning Based Localization and Channel Reconstruction in RIS-aided Systems", IEEE Transact. Wireless Commun. https://doi.org/10.1109/TWC.2024.3380903
  38. Liang, J., Feng, J., Lu, Y., Yin, G., Zhuang, W. and Mao, X. (2024a), "A direct yaw moment control framework through robust TS fuzzy approach considering vehicle stability margin", IEEE/ASME Transact. Mechatron., 29(1), 166-178. https://doi.org/10.1109/TMECH.2023.3274689
  39. Liang, J., Lu, Y., Wang, F., Feng, J., Pi, D., Yin, G. and Li, Y. (2024b), "ETS-Based Human-Machine Robust Shared Control Design Considering the Network Delays", IEEE Transact. Automat. Sci. Eng. https://doi.org/10.1109/TASE.2024.3383094
  40. Liu, Q., Yuan, H., Hamzaoui, R., Su, H., Hou, J. and Yang, H. (2021), "Reduced reference perceptual quality model with application to rate control for video-based point cloud compression", IEEE Transact. Image Process., 30, 6623-6636. https://doi.org/10.1109/TIP.2021.3096060
  41. Lu, J., Liu, Y., Huang, W., Bi, K., Zhu, Y. and Fan, Q. (2022), "Robust control strategy of gradient magnetic drive for microrobots based on extended state observer", Cyborg Bionic Syst. https://doi.org/10.34133/2022/9835014
  42. Luo, R., Peng, Z., Hu, J. and Ghosh, B.K. (2023a), "Adaptive optimal control of affine nonlinear systems via identifier-critic neural network approximation with relaxed PE conditions", Neural Networks, 167, 588-600. https://doi.org/10.1016/j.neunet.2023.08.044
  43. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023b), "Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck", Metals, 13(8), 1402. https://doi.org/10.3390/met13081402
  44. Mohammadzadeh, A., Taghavifar, H., Zhang, C., Alattas, K.A., Liu, J. and Vu, M.T. (2024), "A non-linear fractional-order type-3 fuzzy control for enhanced path-tracking performance of autonomous cars", IET Control Theory Applicat., 18(1), 40-54. https://doi.org/10.1049/cth2.12538
  45. Ning, Y., Zhu, S., Chu, H., Zou, Q., Zhang, C., Li, J., Xiao, P. and Li, G. (2024), "1-bit Low-Cost Electronically Reconfigurable Reflectarray and Phased Array Based on p-i-n Diodes for Dynamic Beam Scanning", IEEE Transact. Antennas Propag., 72(2), 2007-2012. https://doi.org/10.1109/TAP.2023.3325650
  46. Peng, T., Zeng, H., Wang, W., Zhang, X. and Liu, X. (2023), "General and less conservative criteria on stability and stabilization of TS fuzzy systems with time-varying delay", IEEE Transact. Fuzzy Syst., 31(5), 1531-1541. https://doi.org/10.1109/TFUZZ.2022.3204899
  47. Ren, C., Yu, J., Liu, X., Zhang, Z. and Cai, Y. (2022), "Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking", Int. J. Min. Sci. Technol., 32(5), 1153-1165. https://doi.org/10.1016/j.ijmst.2022.06.010
  48. She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AK-SS", Structures, 57, 105289. https://doi.org/10.1016/j.istruc.2023.105289
  49. Safa, M. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  50. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization", Steel Compos. Struct., Int. J., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243
  51. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023a), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Process., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022
  52. Shi, Y., Lan, Q., Lan, X., Wu, J., Yang, T. and Wang, B. (2023b), "Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach", Struct. Multidiscipl. Optimiz., 66(5), 110. https://doi.org/10.1007/s00158-023-03559-z
  53. Shi, Y., Song, C., Chen, Y., Rao, H. and Yang, T. (2023c), "Complex standard eigenvalue problem derivative computation for laminar-turbulent transition prediction", AIAA Journal, 61(8), 3404-3418. https://doi.org/10.2514/1.J062212
  54. Song, F., Liu, Y., Shen, D., Li, L. and Tan, J. (2022), "Learning control for motion coordination in wafer scanners: toward gain adaptation", IEEE Transact. Indust. Electron., 69(12), 13428-13438. https://doi.org/10.1109/TIE.2022.3142428
  55. Tan, J., Zhang, K., Li, B. and Wu, A. (2023), "Event-Triggered Sliding Mode Control for Spacecraft Reorientation With Multiple Attitude Constraints", IEEE Transact. Aerosp. Electron. Syst., 59(5), 6031-6043. https://doi.org/10.1109/TAES.2023.3270391
  56. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2020), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., Int. J., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385
  57. Wang, L., Meng, L., Kang, R., Liu, B., Gu, S., Zhang, Z.,... Ming, A. (2022), "Design and dynamic locomotion control of quadruped robot with perception-less terrain adaptation", Cyborg Bionic Syst. https://doi.org/10.34133/2022/9816495
  58. Wang, R., Gu, Q., Lu, S., Tian, J., Yin, Z., Yin, L. and Zheng, W. (2024a), "FI-NPI: Exploring Optimal Control in Parallel Platform Systems", Electronics, 13(7), 1168. https://doi.org/10.3390/electronics13071168
  59. Wang, W., Liang, J., Liu, M., Ding, L. and Zeng, H. (2024b), "Novel Robust Stability Criteria for Lur'e Systems with Time-Varying Delay", Mathematics, 12(4), 583. https://doi.org/10.3390/math12040583
  60. Wu, J.C., Chih, H.H. and Chen, C.H. (2006), "A robust control method for seismic protection of civil frame building", J. Sound Vib., 294(1-2), 314-328. https://doi.org/10.1016/j.jsv.2005.11.019
  61. Xiao, N., Wang, Y., Chen, L., Wang, G., Wen, Y. and Li, P. (2023a), "Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth", IEEE Antennas Wireless Propag. Lett., 22(1), 34-38. https://doi.org/10.1109/LAWP.2022.3201070
  62. Xiao, Z., Fang, H., Jiang, H., Bai, J., Havyarimana, V., Chen, H. and Jiao, L. (2023b), "Understanding private car aggregation effect via spatio-temporal analysis of trajectory data", IEEE Transact. Cybernet., 53(4), 2346-2357. https://doi.org/10.1109/TCYB.2021.3117705
  63. Xiao, Z., Li, H., Jiang, H., Li, Y., Alazab, M., Zhu, Y. and Dustdar, S. (2023c), "Predicting urban region heat via learning arrive-stay-leave behaviors of private cars", IEEE Transact. Intell. Transport. Syst., 24(10), 10843-10856. https://doi.org/10.1109/TITS.2023.3276704
  64. Xu, B. and Guo, Y. (2022), "A novel DVL calibration method based on robust invariant extended Kalman filter", IEEE Transact. Vehicul. Technol., 71(9), 9422-9434. https://doi.org/10.1109/TVT.2022.3182017
  65. Xu, B., Wang, X., Zhang, J., Guo, Y. and Razzaqi, A.A. (2022a), "A novel adaptive filtering for cooperative localization under compass failure and non-gaussian noise", IEEE Transact. Vehicul. Technol., 71(4), 3737-3749. https://doi.org/10.1109/TVT.2022.3145095
  66. Xu, J., Park, S.H., Zhang, X. and Hu, J. (2022b), "The improvement of road driving safety guided by visual inattentional blindness", IEEE Transact. Intell. Transport. Syst., 23(6), 4972-4981. https://doi.org/10.1109/TITS.2020.3044927
  67. Yin, Y., Guo, Y., Su, Q. and Wang, Z. (2022), "Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning", Drones, 6(8), 215. https://doi.org/10.3390/drones6080215
  68. Yin, H., Wu, Q., Yin, S., Dong, S., Dai, Z. and Soltanian, M.R. (2023), "Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest", J. Hydrol., 616, 128813. https://doi.org/10.1016/j.jhydrol.2022.128813
  69. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., Int. J., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641
  70. Yu, J., Dong, X., Li, Q., Lu, J. and Ren, Z. (2022), "Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems", IEEE Transact. Circuits Syst. I: Regular Papers, 69(6), 2567-2578. https://doi.org/10.1109/TCSI.2022.3151464
  71. Zhang, H., Xiang, X., Huang, B., Wu, Z. and Chen, H. (2023), "Static homotopy response analysis of structure with random variables of arbitrary distributions by minimizing stochastic residual error", Comput. Struct., 288, 107153. https://doi.org/10.1016/j.compstruc.2023.107153
  72. Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322
  73. Zheng, W., Deng, P., Gui, K. and Wu, X. (2023), "An Abstract Syntax Tree based static fuzzing mutation for vulnerability evolution analysis", Inform. Software Technol., 107194. https://doi.org/10.1016/j.infsof.2023.107194
  74. Zhou, P., Zheng, P., Qi, J., Li, C., Lee, H.Y., Duan, A., Lu, L., Li, Z., Hu, L. and Navarro-Alarcon, D. (2024), "Reactive human-robot collaborative manipulation of deformable linear objects using a new topological latent control model", Robot. Comput.-Integr. Manuf., 88, 102727. https://doi.org/10.1016/j.rcim.2024.102727