Acknowledgement
The study described in this paper was supported by the JST SPRING Program (grant number JPMJSP2124) and the JST FOREST Program (grant number JPMJFR205T). The authors also thank to use of the video data on "Archives of E-Defense Shakingtable Experimentation Database and Information (ASEBI)", National Research Institute for Earth Science and Disaster Resilience (NIED), Japan.
References
- Abdulkareem, M., Bakhary, N., Vafaei, M., Noor, N.M. and Padil, K.H. (2018), "Non-probabilistic wavelet method to consider uncertainties in structural damage detection", J. Sound Vib., 433, 77-98. https://doi.org/10.1016/j.jsv.2018.07.011
- Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B. and Vijayanarasimhan, S. (2016), "Youtube-8m: A large-scale video classification benchmark", arXiv preprint arXiv, 1609.08675. https://doi.org/10.48550/arXiv.1609.08675
- Agathos, K., Chatzi, E. and Bordas, SPA. (2018), "Multiple crack detection in 3D using a stable XFEM and global optimization", Compos. Mech., 62(4), 835-852. https://doi.org/10.1007/s00466-017-1532-y
- Alamdari, M.M., Ge, L., Kildashti, K., Zhou, Y., Harvey, B. and Du, Z. (2019), "Non-contact structural health monitoring of a cable-stayed bridge: Case study", Struct. Infrastruct. Eng., 15(8), 1119-1136. https://doi.org/10.1080/15732479.2019.1609529
- Al-Taie, M.Z., Kadry, S. and Lucas, J.P. (2019), "Online data preprocessing: A case study approach", Int. J. Electr. Comput. Eng., 9(4), 2620. https://doi.org/10.11591/ijece.v9i4.pp2620-2626
- Altunisik, A.C., Okur, F.Y., Karaca, S. and Kahya, V. (2019), "Vibration-based damage detection in beam structures with multiple cracks: Modal curvature vs. modal flexibility methods", Nondestr. Test Eval., 34(1), 33-53. https://doi.org/10.1080/10589759.2018.1518445
- Antoni, J. and Chauhan, S. (2013), "A study and extension of second-order blind source separation to operational modal analysis", J. Sound Vib., 332(4), 1079-1106. https://doi.org/10.1016/j.jsv.2012.09.016
- Aoi, S., Asano, Y., Kunugi, T., Kimura, T., Uehira, K., Takahashi, N., Ueda, H., Shiomi, K., Matsumoto, T. and Fujiwara, H. (2020), "MOWLAS: NIED observation network for earthquake, tsunami and volcano", Earth Planets Space, 72(1), 1-31. https://doi.org/10.1186/s40623-020-01250-x
- Arbabi, H. and Mezic, I. (2017), "Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator", SIAM J. Appl. Dyn. Syst., 16(4), 2096-2126. https://doi.org/10.1137/17M1125236
- Asgarieh, E., Moaveni, B. and Stavridis, A. (2014), "Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake", J. Sound Vib., 333(23), 6057-6073. https://doi.org/10.1016/j.jsv.2014.04.064
- Astroza, R., Ebrahimian, H. and Conte, J.P. (2019), "Performance comparison of Kalman-based filters for nonlinear structural finite element model updating", J. Sound Vib., 438, 520-542. https://doi.org/10.1016/j.jsv.2018.09.023
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications", Mech. Syst. Signal Process., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077
- Bhowmick, S. and Nagarajaiah, S. (2020), "Identification of full-field dynamic modes using continuous displacement response estimated from vibrating edge video", J. Sound Vib., 489, 115657. https://doi.org/10.1016/j.jsv.2020.115657
- Bhowmick, S., Nagarajaiah, S. and Lai, Z. (2020), "Measurement of full-field displacement time history of a vibrating continuous edge from video", Mech. Syst. Signal Process., 144, 106847. https://doi.org/10.1016/j.ymssp.2020.106847
- Brandes, U. (2001), "A faster algorithm for betweenness centrality", J. Math Sociol., 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249
- Brewick, P.T. and Smyth, A.W. (2014), "On the application of blind source separation for damping estimation of bridges under traffic loading", J. Sound Vib., 333(26), 7333-7351. https://doi.org/10.1016/j.jsv.2014.08.010
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastruct. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chaudhry, R., Ravichandran, A., Hager, G. and Vidal, R. (2009), "Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions", In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE Publications, pp. 1932-1939. https://doi.org/10.1109/CVPR.2009.5206821
- Chen, Y. and Yang, H. (2016), "Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes", Eur. Phys. J. B., 89, 1-11. https://doi.org/10.1140/epjb/e2016-60850-y
- Chen, J.G., Wadhwa, N., Cha, Y.J., Durand, F., Freeman, W.T. and Buyukozturk, O. (2015), "Modal identification of simple structures with high-speed video using motion magnification", J. Sound Vib., 345, 58-71. https://doi.org/10.1016/j.jsv.2015.01.024
- Chen, C.B., Yang, H. and Kumara, S. (2018), "Recurrence network modeling and analysis of spatial data", Chaos, 28(8), 085714. https://doi.org/10.1063/1.5024917
- Chen, Y., Qian, Z., Chen, K., Tan, P. and Tesfamariam, S. (2019), "Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction", Struct. Control Health Monit., 26(11), e2437. https://doi.org/10.1002/stc.2437
- Chen, Z., Wang, Y., Wu, J., Deng, C. and Hu, K. (2021), "Sensor data-driven structural damage detection based on deep convolutional neural networks and continuous wavelet transform", Appl. Intell., 51(8), 5598-5609. https://doi.org/10.1007/s10489-020-02092-6
- Cheng, L. (2021), "Digital video image preprocessing algorithm based on embedded system", J. Phys. Conf. Series, 2074(1), 012004. https://iopscience.iop.org/article/10.1088/17426596/2074/1/012004/meta
- Cheng, C.M., Peng, Z.K., Dong, X.J., Zhang, W.M. and Meng, G. (2014), "Locating non-linear components in two dimensional periodic structures based on NOFRFs", Int. J. Non-Linear Mech., 67, 198-208. https://doi.org/10.1016/j.ijnonlinmec.2014.09.004
- Chiu, L.N.S., Falzon, B.G., Ruan, D., Xu, S., Thomson, R.S., Chen, B. and Yan, W. (2015), "Crush responses of composite cylinder under quasi-static and dynamic loading", Compos. Struct., 131, 90-98. https://doi.org/10.1016/j.compstruct.2015.04.057
- Choi, I., Kim, J. and Kim, D. (2016), "A target-less vision-based displacement sensor based on image convex hull optimization for measuring the dynamic response of building structures", Sensors (Basel), 16(12), 2085. https://doi.org/10.3390/s16122085
- Chung, Y.L., Nagae, T., Hitaka, T. and Nakashima, M. (2010), "Seismic resistance capacity of high-rise buildings subjected to long-period ground motions: E-Defense shaking table test", J. Struct. Eng., 136(6), 637-644. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000161
- Colin, M., Thomas, O., Grondel, S. and Cattan, E. (2020), "Very large amplitude vibrations of flexible structures: Experimental identification and validation of a quadratic drag damping model", J. Fluids Struct., 97, 103056. https://doi.org/10.1016/j.jfluidstructs.2020.103056
- Dasari, S., Dorn, C., Yang, Y., Larson, A. and Mascarenas, D. (2018), "A framework for the identification of full-field structural dynamics using sequences of images in the presence of non-ideal operating conditions", J. Intell. Mater. Syst. Struct., 29(17), 3456- 3481. https://doi.org/10.1177/1045389X17754271
- Dong, C.Z. and Catbas, F.N. (2021), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monit., 20(2), 692-743. https://doi.org/10.1177/1475921720935585
- Dunphy, K., Fekri, M.N., Grolinger, K. and Sadhu, A. (2022), "Data augmentation for deep-learning-based multiclass structural damage detection using limited information", Sensors (Basel), 22(16), 6193. https://doi.org/10.3390/s22166193
- Eckmann, J.P., Kamphorst, S.O. and Ruelle, D. (1987), "Recurrence plots of dynamical systems", Europhys. Lett., 4(9), 973-977. https://doi.org/10.1209/0295-5075/4/9/004
- EM-DAT (2023), The International Disaster Database. Institute of Health and Society (IRSS), Brussels, Belgium. https://www.emdat.be [Accessed in October 2023]
- Fallahian, M., Ahmadi, E. and Khoshnoudian, F. (2022), "A structural damage detection algorithm based on discrete wavelet transform and ensemble pattern recognition models", J. Civil Struct. Health Monit., 12(2), 323-338. https://doi.org/10.1007/s13349-021-00546-0
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: A review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Farneback, G. (2003), "Two-frame motion estimation based on polynomial expansion", Proceedings of Image Analysis: 13th Scandinavian Conference, SCIA 2003, Halmstad, Sweden, June-July, Vol. 13, pp. 363-370. https://doi.org/10.1007/3-540-45103-X_50
- Farrar, C.R., Worden, K., Todd, M.D., Park, G., Nichols, J., Adams, D.E., Bement, M.T. and Farinholt, K. (2007), "Nonlinear system identification for damage detection (No. LA-14353-MS)", Los Alamos National Lab. (LANL), Los Alamos, NM, USA.
- Farrar, C., Nishio, M., Hemez, F., Stull, C., Park, G., Cornwell, P. and Worden, K. (2016), "Feature extraction for structural dynamics model validation (No. LA-UR-16-20151)", Los Alamos National Lab. (LANL), Los Alamos, NM, USA.
- Feldman, M. (1994a), "Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method "Freevib"", Mech. Syst. Signal Process., 8(2), 119-127. https://doi.org/10.1006/mssp.1994.1011
- Feldman, M. (1994b), "Non-linear system vibration analysis using Hilbert transform--II. Forced vibration analysis method "Forcevib"", Mech. Syst. Signal Process., 8(3), 309-318. https://doi.org/10.1006/mssp.1994.1023
- Feldman, M. (2014), "Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems", Mech. Syst. Signal Process., 47(1-2), 66-77. https://doi.org/10.1016/j.ymssp.2012.09.003
- Feng, D. and Feng, M.Q. (2016), "Vision-based multipoint displacement measurement for structural health monitoring", Struct. Control Health Monit., 23(5), 876-890. https://doi.org/10.1002/stc.1819
- Feng, D., Feng, M.Q., Ozer, E. and Fukuda, Y. (2015), "A vision-based sensor for noncontact structural displacement measurement", Sensors (Basel), 15(7), 16557-16575. https://doi.org/10.3390/s150716557
- Fleet, D.J. and Jepson, A.D. (1990), "Computation of component image velocity from local phase information", Int. J. Comput. Vision., 5(1), 77-104. https://doi.org/10.1007/BF00056772
- Frigui, F., Faye, J.P., Martin, C., Dalverny, O., Peres, F. and Judenherc, S. (2018), "Global methodology for damage detection and localization in civil engineering structures", Eng. Struct., 171, 686-695. https://doi.org/10.1016/j.engstruct.2018.06.026
- Goyal, R., Ebrahimi, Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim, H., Haenel, V., Fruend, I., Yianilos, P., Mueller-Freitag, M. and Memisevic, R. (2017), "The "something something" video database for learning and evaluating visual common sense", Proceedings of the IEEE International Conference on Computer Vision, pp. 5842-5850. https://openaccess.thecvf.com/content_iccv_2017/html/Goyal_The_Something_Something_ICCV_2017_paper.html
- Grotto, F., Rivallant, S. and Bouvet, C. (2022), "Development of a 3D finite element model at mesoscale for the crushing of unidirectional composites: Application to plates crushing", Compos. Struct., 287, 115346. https://doi.org/10.1016/j.compstruct.2022.115346
- Horiuchi, T., Ohsaki, M., Kurata, M., Ramirez, J.A., Yamashita, T., and Kajiwara, K. (2022), "Contributions of E-Defense Shaking Table to Earthquake Engineering and its Future", J. Disaster Res., 17(6), 985-999. https://doi.org/10.20965/jdr.2022.p0985
- Hou, R., Xia, Y. and Zhou, X. (2018), "Structural damage detection based on l1 regularization using natural frequencies and mode shapes", Struct. Control Health Monit., 25(3), e2107. https://doi.org/10.1002/stc.2107
- Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Autom. Constr., 105, 102844. https://doi.org/10.1016/j.autcon.2019.102844
- Jiao, J., Guo, J., Fujita, K. and Takewaki, I. (2021), "Displacement measurement and nonlinear structural system identification: A vision-based approach with camera motion correction using planar structures", Struct. Control Health Monit., 28(8), e2761. https://doi.org/10.1002/stc.2761
- Kaewunruen, S., Ngamkhanong, C. and Xu, S. (2020), "Large amplitude vibrations of imperfect spider web structures", Sci. Rep., 10(1), 19161. https://doi.org/10.1038/s41598-020-76269-x
- Kang, D. and Cha, Y.J. (2018), "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput.-Aided Civil Infrastruct. Eng., 33(10), 885-902. https://doi.org/10.1111/mice.12375
- Khaloo, A. and Lattanzi, D. (2017), "Pixel-wise structural motion tracking from rectified repurposed videos", Struct. Control Health Monit., 24(11), e2009. https://doi.org/10.1002/stc.2009
- Khatir, S., Abdel, Wahab, M.A., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017
- Khuc, T. and Catbas, F.N. (2017), "Completely contactless structural health monitoring of real-life structures using cameras and computer vision", Struct. Control Health Monit., 24(1), e1852. https://doi.org/10.1002/stc.1852
- Kordestani, H. and Zhang, C. (2020), "Direct use of the savitzky-golay filter to develop an output-only trend line-based damage detection method", Sensors (Basel), 20(7). https://doi.org/10.3390/s20071983
- Kumar, P., Batchu, S. and Kota, S.R. (2021), Real-time concrete damage detection using deep learning for high rise structures. IEEE Access, 9, 112312-112331. https://doi.org/10.1109/ACCESS.2021.3102647
- Kuok, S.C., Yuen, K.V., Girolami, M. and Roberts, S. (2022), "Broad learning robust semi-active structural control: A nonparametric approach", Mech. Syst. Signal Process., 162, 108012. https://doi.org/10.1016/j.ymssp.2021.108012
- Kwok, H.K. and Jones, D.L. (2000), "Improved instantaneous frequency estimation using an adaptive short-time Fourier transform", IEEE Trans. Signal Process., 48(10), 2964-2972. https://doi.org/10.1109/78.869059
- Lacy, S.L. and Bernstein, D.S. (2005), "Subspace identification for non-linear systems with measured-input non-linearities", Int. J. Control., 78(12), 906-926. https://doi.org/10.1080/00207170500214095
- Lee, H.M. and Park, H.S. (2011), "Gage-free stress estimation of a beam-like structure based on terrestrial laser scanning", Comput.-Aided Civil Infrastruct. Eng., 26(8), 647-658. https://doi.org/10.1111/j.1467-8667.2011.00723.x
- Lee, S.Y., Nguyen, K.D., Huynh, T.C., Kim, J.T., Yi, J.H. and Han, S.H. (2012), "Vibration-based damage monitoring of harbor caisson structure with damaged foundation-structure interface", Smart Struct. Syst., Int. J., 10(6), 517-546. https://doi.org/10.12989/sss.2012.10.6.517
- Lee, J., Natsev, A., Reade, W., Sukthankar, R. and Toderici, G. (2019), "The 2nd youtube-8m large-scale video understanding challenge", Proceedings of the European conference on Computer Vision (ECCV Workshops), pp. 193-205. https://doi.org/10.1007/978-3-030-11018-5_18
- Lee, S.Y., Kim, H., Higuchi, H. and Ishikawa, M. (2021), "Visualization method for the cell-level vesicle transport using optical flow and a diverging colormap", Sensors, 21(2), 522. https://doi.org/10.3390/s21020522
- Li, S., Wu, C. and Kong, F. (2019), "Shaking table model test and seismic performance analysis of a high-rise RC shear wall structure", Shock Vib., 2019, 1-17. https://doi.org/10.1155/2019/6189873
- Liu, L., Mi, J., Zhang, Y. and Lei, Y. (2021), "Damage detection of bridge structures under unknown seismic excitations using support vector machine based on transmissibility function and wavelet packet energy", Smart Struct. Syst., Int. J., 27(2), 257-266. https://doi.org/10.12989/sss.2021.27.2.257
- Luengo, J., Garcia-Gil, D., Ramirez-Gallego, S., Garcia, S., and Herrera, F. (2020), "Big data preprocessing", Cham: Springer. https://doi.org/10.1007/978-3-030-39105-8
- Magalhaes, F., Cunha, A. and Caetano, E. (2012), "Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection", Mech. Syst. Signal Process., 28, 212-228. https://doi.org/10.1016/j.ymssp.2011.06.011
- Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D. and Memisevic, R. (2018), "On the effectiveness of task granularity for transfer learning", arXiv preprint arXiv.,1804.09235. https://doi.org/10.48550/arXiv.1804.09235
- Marchesiello, S. and Garibaldi, L. (2008), "A time domain approach for identifying nonlinear vibrating structures by subspace methods", Mech. Syst. Signal Process., 22(1), 81-101. https://doi.org/10.1016/j.ymssp.2007.04.002
- Masri, S.F. and Caughey, T.K. (1979), "A nonparametric identification technique for nonlinear dynamic problems", J. Appl. Mech., 46(2), 433-447. https://doi.org/10.1115/1.3424568
- Masri, S.F., Sassi, H. and Caughey, T.K. (1982), "Nonparametric identification of nearly arbitrary nonlinear systems", J. Appl. Mech., 49(3), 619-628. https://doi.org/10.1115/1.3162537
- Mousavi, A.A., Zhang, C., Masri, S.F. and Gholipour, G. (2021), "Damage detection and localization of a steel truss bridge model subjected to impact and white noise excitations using empirical wavelet transform neural network approach", Measurement, 185, 110060. https://doi.org/10.1016/j.measurement.2021.110060
- National Research Institute for Earth Science and Disaster Resilience (NIED) (2023), "ASEBI: Archives of E-Defense Shaking table Experimentation Database and Information." https://doi.org/10.17598/nied.0020 [Accessed in October 2023]
- Nelles, O. (2020), "Nonlinear system identification: From classical approaches to neural networks, fuzzy models, and gaussian processes", Springer nature. https://doi.org/10.1007/978-3-030-47439-3
- Newman, M.E.J. (2005), "A measure of betweenness centrality based on random walks", Soc. Netw., 27(1), 39-54. https://doi.org/10.1016/j.socnet.2004.11.009
- Ngo, N. and Robertson, I.N. (2012), "Video analysis of the March 2011 tsunami in Japan's coastal cities", Research rep. UHM/CEE, 12.
- Norio, O., Ye, T., Kajitani, Y., Shi, P. and Tatano, H. (2011), "The 2011 eastern Japan great earthquake disaster: Overview and comments", Int. J. Disaster Risk. Sci., 2(1), 34-42. https://doi.org/10.1007/s13753-011-0004-9
- Nyquist, H. (1928), "Certain topics in telegraph transmission theory", Trans. Am. Inst. Electr. Eng., 47(2), 617-644. https://doi.org/10.1109/T-AIEE.1928.5055024
- Oliveira, C.S. and Ferreira, M.A. (2021), "Following the video surveillance and personal video cameras: New tools and innovations to health monitor the earthquake wave field", Int. J. Disaster Risk Reduc., 64, 102489. https://doi.org/10.1016/j.ijdrr.2021.102489
- Oppenheim, A.V. (1965), "Superposition in a class of nonlinear systems", Technical report 432.
- Oster, G. and Nishijima, Y. (1963), "Moire patterns", Sci. Am., 208(5), 54-63. https://doi.org/10.1038/scientificamerican0563-54
- Oster, G., Wasserman, M. and Zwerling, C. (1964), "Theoretical interpretation of moire patterns", Josa., 54(2), 169-175. https://doi.org/10.1364/JOSA.54.000169
- Pan, B., Tian, L. and Song, X. (2016), "Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation", NDT. E. Int., 79, 73-80. https://doi.org/10.1016/j.ndteint.2015.12.006
- Peng, Z.K., Lang, Z.Q. and Billings, S.A. (2007), "Crack detection using nonlinear output frequency response functions", J. Sound Vib., 301(3-5), 777-788. https://doi.org/10.1016/j.jsv.2006.10.039
- Pnevmatikos, N.G. and Hatzigeorgiou, G.D. (2017), "Damage detection of framed structures subjected to earthquake excitation using discrete wavelet analysis", Bull. Earthq. Eng., 15(1), 227-248. https://doi.org/10.1007/s10518-016-9962-z
- Proctor, J.L., Brunton, S.L. and Kutz, J.N. (2016), "Dynamic mode decomposition with control", SIAM J. Appl. Dyn. Syst., 15(1), 142-161. https://doi.org/10.1137/15M1013857
- Redmon, J. and Farhadi, A. (2018), "Yolov3: An incremental improvement", arXiv preprint arXiv, 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
- Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), "You only look once: Unified, real-time object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779-788. https://doi.org/10.1109/CVPR.2016.91
- Ren, W.X. and Roeck, G.D. (2002a), "Structural damage identification using modal data. I: Simulation verification", J. Struct. Eng., 128(1), 87-95. htps://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87)
- Ren, W.X. and Roeck, G.D. (2002b), "Structural damage identification using modal Data. II: Test Verification", J. Struct. Eng., 128(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96)
- Ribeiro, D., Calcada, R., Ferreira, J. and Martins, T. (2014), "Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system", Eng. Struct., 75, 164-180. https://doi.org/10.1016/j.engstruct.2014.04.051
- Ribeiro, D., Santos, R., Cabral, R., Saramago, G., Montenegro, P., Carvalho, H., Correia, J. and Calcada, R. (2021), "Non-contact structural displacement measurement using Unmanned Aerial Vehicles and video-based systems", Mech. Syst. Signal Process., 160, 107869. https://doi.org/10.1016/j.ymssp.2021.107869
- Rice, H.J. and Fitzpatrick, J.A. (1988), "A generalised technique for spectral analysis of non-linear systems", Mech. Syst. Signal Process., 2(2), 195-207. https://doi.org/10.1016/0888-3270(88)90043-X
- Rice, H.J. and Fitzpatrick, J.A. (1991), "The measurement of nonlinear damping in single-degree-of-freedom systems", J. Vib. Acoust., 113(1), 132-140. https://doi.org/10.1115/1.2930147
- Rowley, C.W., Mezic, I., Bagheri, S., Schlatter, P. and Henningson, D.S. (2009), "Spectral analysis of nonlinear flows", J. Fluid. Mech., 641, 115-127. https://doi.org/10.1017/S0022112009992059
- Rubio, L. and Fernandez-Saez, J. (2012), "A new efficient procedure to solve the nonlinear dynamics of a cracked rotor", Nonlinear Dyn., 70, 1731-1745. https://doi.org/10.1007/s11071-012-0569-x
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084
- Sarrafi, A., Mao, Z., Niezrecki, C. and Poozesh, P. (2018), "Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification", J. Sound Vib., 421, 300-318. https://doi.org/10.1016/j.jsv.2018.01.050
- Sathyamoorthy, M. (2017), "Nonlinear analysis of structures", CRC Press. https://doi.org/10.1201/9780203711255
- Serra, R. and Lopez, L. (2017), "Damage detection methodology on beam-like structures based on combined modal Wavelet Transform strategy", Mech. Ind., 18(8), 807. https://doi.org/10.1051/meca/2018007
- Sha, G., Radzienski, M., Cao, M. and Ostachowicz, W. (2019), "A novel method for single and multiple damage detection in beams using relative natural frequency changes", Mech. Syst. Signal Process., 132, 335-352. https://doi.org/10.1016/j.ymssp.2019.06.027
- Shakeel, A., Kirichek, A. and Chassagne, C. (2020), "Yield stress measurements of mud sediments using different rheological methods and geometries: An evidence of two-step yielding", Mar. Geol., 427, 106247. https://doi.org/10.1016/j.margeo.2020.106247
- Shokrani, Y., Dertimanis, V.K., Chatzi, E.N. and Savoia, N. (2018), "On the use of mode shape curvatures for damage localization under varying environmental conditions", Struct. Control Health Monit., 25(4), e2132. https://doi.org/10.1002/stc.2132
- Simoen, E., Roeck, G. and Lombaert, G. (2015), "Dealing with uncertainty in model updating for damage assessment: A review", Mech. Syst. Signal Process., 56-57, 123-149. https://doi.org/10.1016/j.ymssp.2014.11.001
- Simon, M. and Tomlinson, G.R. (1984), "Use of the Hilbert transform in modal analysis of linear and non-linear structures", J. Sound Vib., 96(4), 421-436. https://doi.org/10.1016/0022-460X(84)90630-8
- Sirca, J.G. and Adeli, H. (2012), "System identification in structural engineering", Sci. Iran., 19(6), 1355-1364. https://doi.org/10.1016/j.scient.2012.09.002
- Smith, A.R. (1978), "Color gamut transform pairs", ACM Siggraph Computer Graphics, 12(3), 12-19. https://doi.org/10.1145/965139.807361
- Smyl, D., Pour-Ghaz, M. and Seppanen, A. (2018), "Detection and reconstruction of complex structural cracking patterns with electrical imaging", NDT E Int., 99, 123-133. https://doi.org/10.1016/j.ndteint.2018.06.004
- Staszewski, W.J., bin, J.R., Klepka, A., Szwedo, M. and Uhl, T. (2012), "A review of laser Doppler vibrometry for structural health monitoring applications", Key Eng. Mater., 518, 1-15. https://doi.org/10.4028/www.scientific.net/KEM.518.1
- Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070
- Tashakori, S., Baghalian, A., Unal, M., Fekrmandi, H., senyurek, D., McDaniel, D. and Tansel, I.N. (2016), "Contact and non-contact approaches in load monitoring applications using surface response to excitation method", Measurement, 89, 197-203. https://doi.org/10.1016/j.measurement.2016.04.013
- Tian, H. and Chen, S.C. (2017), "MCA-NN: Multiple correspondence analysis based neural network for disaster information detection", IEEE Third International Conference on Multimedia Big Data (BigMM). IEEE Publications, pp. 268-275. https://doi.org/10.1109/BigMM.2017.30
- Touze, C., Vizzaccaro, A. and Thomas, O. (2021), "Model order reduction methods for geometrically nonlinear structures: A review of nonlinear techniques", Nonlinear Dyn., 105(2), 1141-1190. https://doi.org/10.1007/s11071-021-06693-9
- Verboven, P., Guillaume, P., Vanlanduit, S. and Cauberghe, B. (2006), "Assessment of nonlinear distortions in modal testing and analysis of vibrating automotive structures", J. Sound Vib., 293(1-2), 299-319. https://doi.org/10.1016/j.jsv.2005.09.039
- Wadhwa, N., Rubinstein, M., Durand, F. and Freeman, W.T. (2013), "Phase-based video motion processing", ACM Trans. Graph., 32(4), 1-10. https://doi.org/10.1145/2461912.2461966
- Wang, C., Ai, D. and Ren, W.X. (2019), "A wavelet transform and substructure algorithm for tracking the abrupt stiffness degradation of shear structure", Adv. Struct. Eng., 22(5), 1136-1148. https://doi.org/10.1177/1369433218807690
- Wang, N., Zhao, X., Zou, Z., Zhao, P. and Qi, F. (2020), "Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning", Comput.-Aided Civil Infrastruct. Eng., 35(3), 277-291. https://doi.org/10.1111/mice.12488
- Wickramasinghe, W.R., Thambiratnam, D.P. and Chan, T.H.T. (2020), "Damage detection in a suspension bridge using modal flexibility method", Eng. Fail Anal., 107, 104194. https://doi.org/10.1016/j.engfailanal.2019.104194
- Wu, Y. and Chen, X. (2020), "Identification of nonlinear aerodynamic damping from stochastic crosswind response of tall buildings using unscented Kalman filter technique", Eng. Struct., 220, 110791. https://doi.org/10.1016/j.engstruct.2020.110791
- Xie, Z. and Feng, J. (2012), "Real-time nonlinear structural system identification via iterated unscented Kalman filter", Mech. Syst. Signal Process., 28, 309-322. https://doi.org/10.1016/j.ymssp.2011.02.005
- Xu, Y., Brownjohn, J. and Kong, D. (2018), "A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge", Struct. Control Health Monit., 25(5), e2155. https://doi.org/10.1002/stc.2155
- Yang, H. and Chen, Y. (2014), "Heterogeneous recurrence monitoring and control of nonlinear stochastic processes", Chaos, 24(1), 013138. https://doi.org/10.1063/1.4869306
- Yang, Y. and Nagarajaiah, S. (2013), "Blind modal identification of output-only structures in time-domain based on complexity pursuit", Earthquake Engng. Struct. Dyn., 42(13), 1885-1905. https://doi.org/10.1002/eqe.2302
- Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C. and Mascarenas, D. (2017a), "Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification", Mech. Syst. Signal Process., 85, 567-590. https://doi.org/10.1016/j.ymssp.2016.08.041
- Yang, Y., Dorn, C., Mancini, T., Talken, Z., Nagarajaiah, S., Kenyon, G., Farrar, C. and Mascarenas, D. (2017b), "Blind identification of full-field vibration modes of output-only structures from uniformly sampled, possibly temporally-aliased (sub-Nyquist), video measurements", J. Sound Vib., 390, 232-256. https://doi.org/10.1016/j.jsv.2016.11.034
- Yang, Y., Dorn, C., Farrar, C. and Mascarenas, D. (2020), "Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements", Eng. Struct., 207, 110183. https://doi.org/10.1016/j.engstruct.2020.110183
- Ye, S.Q., Mao, X.Y., Ding, H., Ji, J.C. and Chen, L.Q. (2020), "Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions", Int. J. Mech. Sci., 168, 105294. https://doi.org/10.1016/j.ijmecsci.2019.105294
- Yoon, H., Hoskere, V., Park, J.W. and Spencer, J.B. (2017), "Cross-correlation-based structural system identification using unmanned aerial vehicles", Sensors (Basel), 17(9), 2075. https://doi.org/10.3390/s17092075
- Yoon, H., Shin, J. and Spencer, J.B. (2018), "Structural displacement measurement using an unmanned aerial system", Comput.-Aided Civil Infrastruct. Eng., 33(3), 183-192. https://doi.org/10.1111/mice.12338
- Yuan, F.G., Zargar, S.A., Chen, Q. and Wang, S. (2020), "Machine learning for structural health monitoring: Challenges and opportunities", Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2020, Vol. 11379, p. 1137903. https://doi.org/10.1117/12.2561610
- Yuan, C., Chen, W., Hao, H. and Kong, Q. (2021), "Near real-time bolt-loosening detection using mask and region-based convolutional neural network", Struct. Control Health Monit., 28(7), e2741. https://doi.org/10.1002/stc.2741
- Zaurin, R. and Necati, C.F. (2011), "Structural health monitoring using video stream, influence lines, and statistical analysis", Struct. Health Monit., 10(3), 309-332. https://doi.org/10.1177/1475921710373290
- Zhai, W. and Peng, Z.R. (2020), "Damage assessment using google street view: Evidence from hurricane Michael in Mexico Beach Florida", Appl. Geogr., 123, 102252. https://doi.org/10.1016/j.apgeog.2020.102252
- Zhang, D., Guo, J., Lei, X. and Zhu, C. (2016a), "A high-speed vision-based sensor for dynamic vibration analysis using fast motion extraction algorithms", Sensors (Basel), 16(4), 572. https://doi.org/10.3390/s16040572
- Zhang, M.W., Peng, Z.K., Dong, X.J., Zhang, W.M. and Meng, G. (2016b), "Location identification of nonlinearities in MDOF systems through order determination of state-space models", Nonlinear Dyn., 84(3), 1837-1852. https://doi.org/10.1007/s11071-016-2609-4
- Zhang, L., Zhou, G., Han, Y., Lin, H. and Wu, Y. (2018), "Application of internet of things technology and convolutional neural network model in bridge crack detection", IEEE Access, 6, 39442-39451. https://doi.org/10.1109/ACCESS.2018.2855144