과제정보
This work is supported by the National Natural Science Foundation of China under Grant No. 52075008 and Grant 52305086.
참고문헌
- Bae, J., Jung, W. and Park, Y.H. (2022), "Normal data based rotating machine anomaly detection using CNN with self-labeling", Smart Struct. Syst., Int. J., 29(6), 757-766. https://doi.org/10.12989/sss.2022.29.6.757
- Cui, L. Li, W., Wang, X., Zhao, D. and Wang, H. (2022), "Comprehensive remaining useful life prediction for rolling element bearings based on time-varying particle filtering", IEEE Trans. Instrum. Meas., 71, 1-10. https://doi.org/10.1109/TIM.2022.3163167
- Elbouchikhi, E., Choqueuse, V., Auger, F. and Benbouzid, M.E.H. (2017), "Motor current signal analysis based on a matched subspace detector", IEEE Trans. Instrum. Meas., 66(12), 3260-3270. https://doi.org/10.1109/TIM.2017.2749858
- Gao, Y., Liu, X. and Xiang, J. (2020), "FEM simulation-based generative adversarial networks to detect bearing faults", IEEE Trans. Ind. Inform., 16(7), 4961-4971. https://doi.org/10.1109/TII.2020.2968370
- Guan, Y. and Feng, Z. (2021), "Adaptive linear chirplet transform for analyzing signals with crossing frequency trajectories", IEEE Trans. Ind. Electron., 69(8), 8396-8410. https://doi.org/10.1109/TIE.2021.3097605
- Herold, T., Mboo, C.P. and Hameyer, K. (2013), "Evaluation of the use of an electrical drive as a sensor for the detection of bearing damage", Proc. Conference on Acoustics, AIA-DAGA., pp. 1538-1540.
- Hoang, D.T. and Kang, H.J. (2020), "A motor current signal-based bearing fault diagnosis using deep learning and information fusion", IEEE Trans. Instrum. Meas., 69(6), 3325-3333. https://doi.org/10.1109/TIM.2019.2933119
- Hsueh, Y.M., Ittangihal, V.R., Wu, W.B., Chang, H.C. and Kuo, C.C. (2019), "Fault diagnosis system for induction motors by CNN using empirical wavelet transform", Symmetry, 11(10), 1212. https://doi.org/10.3390/sym11101212 [EWT]
- Kim, I., Lee, Y., Oh, J. and Kim, N. (2022), "Fault detection and classification of permanent magnet synchronous machine using signal injection", Smart Struct. Syst., Int. J., 29(6), 785-790. https://doi.org/10.12989/sss.2022.29.6.785
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint. https://doi.org/10.48550/arXiv.1412.6980
- Kumar, A., Vashishtha, G., Gandhi, C.P., Zhou, Y., Glowacz, A. and Xiang, J. (2021), "Novel convolutional neural network (NCNN) for the diagnosis of bearing defects in rotary machinery", IEEE Trans. Instrum. Meas., 70, 1-10. https://doi.org/10.1109/TIM.2021.3055802
- Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
- Leite, V.C.M.N., da Silva, J.G.B., Torres, G.L., Veloso, G.F.C., da Silva, L.E.B., Bonaldi, E.L. and de Oliveira, L.E.D.L. (2017), "Bearing fault detection in induction machine using squared envelope analysis of stator current", Bearing Technology; Rijeka, Croatia: InTech.
- Lessmeier, C., Kimotho, J.K., Zimmer, D. and Sextro, W. (2016), "Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification", Proc. Eur. Conf. Prognostics Health Manage. Soc., 3(1), 5-8. https://doi.org/10.36001/phme.2016.v3i1.1577
- Li, Y., Dai, W. and Zhang, W. (2020), "Bearing Fault Feature Selection Method Based on Weighted Multidimensional Feature Fusion", IEEE Access, 8, 19008-19025. https://doi.org/10.1109/ACCESS.2020.2967537
- Liu, D., Cui, L., Cheng, W., Zhao, D. and Wen, W. (2022a), "Rolling bearing fault severity recognition via data mining integrated with convolutional neural network", IEEE Sens. J., 22(6), 5768-5777. https://doi.org/10.1109/JSEN.2022.3146151
- Liu, X., Liu, S., Xiang, J., Sun, R. and Wei, Y. (2022b), "An ensemble and shared selective adversarial network for partial domain fault diagnosis of machinery", Eng. Appl. Artif. Intel., 113, 104906. https://doi.org/10.1016/j.engappai.2022.104906
- Liu, D., Cui, L. and Cheng, W. (2023), "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation", Renew. Energy, 206, 645-657. https://doi.org/10.1016/j.renene.2023.01.056
- Randall, R.B. and Antoni, J. (2011), "Rolling element bearing diagnostics-A tutorial", Mech. Syst. signal Process., 25(2), 485-520. https://doi.org/10.1016/j.ymssp.2010.07.017
- Sadoughi, M., Downey, A., Bunge, G., Ranawat, A., Hu, C. and Laflamme, S. (2018), "A deep learning-based approach for fault diagnosis of roller element bearings", In: 2018 Annual Conference of the Prognostics and Health Management Society, 10(1), 1-7.
- Shao, H., Jiang, H., Zhang, H. and Liang, T. (2018), "Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network", IEEE Trans. Ind. Electron., 65(3), 2727-2736. https://doi.org/10.1109/TIE.2017.2745473
- Shao, H., Xia, M., Wan, J. and Silva, C.W. (2022), "Modified stacked autoencoder using adaptive Morlet wavelet for intelligent fault diagnosis of rotating machinery", IEEE-ASME Trans. Mech., 27(1), 24-33. https://doi.org/10.1109/TMECH.2021.3058061
- Shen, C., Wang, D., Liu, Y., Kong, F. and Tse, P.W. (2014), "Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines", Smart Struct. Syst., Int. J., 13(3), 453-471. https://doi.org/10.12989/sss.2014.13.3.453
- Singh, S., Kumar, A. and Kumar, N. (2014), "Motor current signature analysis for bearing fault detection in mechanical systems", Procedia Mater. Sci., 6, 171-177. https://doi.org/10.1016/j.mspro.2014.07.021
- Toma, R.N., Prosvirin, A.E. and Kim, J.M. (2020), "Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers", Sensors, 20(7), 1884. https://doi.org/10.3390/s20071884
- Van, V.M.L. and Hinton, G. (2008), "Visualizing data using t-SNE", J. Mach. Learn. Res., 9, 2579-2605.
- Wang, G. and Xiang, J. (2021), "Railway sleeper crack recognition based on edge detection and CNN", Smart Struct. Syst., Int. J., 28(6), 779-789. https://doi.org/10.12989/sss.2021.28.6.779
- Wang, H., Xu, J., Yan, R., Sun, C. and Chen, X. (2019), "Intelligent bearing fault diagnosis using multi-head attention-based CNN", Procedia Manuf., 49, 112-118. https://doi.org/10.1016/j.promfg.2020.07.005
- Wang, H., Xu, J., Yan, R. and Gao, R.X. (2020), "A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN", IEEE Trans. Instrum. Meas., 69(5), 2377-2389. https://doi.org/10.1109/TIM.2019.2956332