DOI QR코드

DOI QR Code

The storage mite Tyrophagus putrescentiae induces greater lung inflammation than house dust mites in mice

  • Eun-Min Kim (Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Ju Yeong Kim (Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • You Shine Kwak (Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Myung-Hee Yi (Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Tai-Soon Yong (Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
  • Received : 2024.04.22
  • Accepted : 2024.07.03
  • Published : 2024.08.31

Abstract

Exposure to storage mite (SM) and house dust mite (HDM) allergens is a risk factor for sensitization and asthma development; however, the related immune responses and their pathology have not been fully investigated. The HDMs Dermatophagoides farinae and Dermatophagoides pteronyssinus and SM Tyrophagus putrescentiae are potent allergens that induce asthma. Most SM-related studies have focused on the allergic reactions of individuals by measuring their immunoglobulin (Ig)E expression. Considering the limited research on this topic, the present study aims to investigate the differences in the immune responses induced by HDMs and SMs and histologically analyze lung tissues in a mouse asthma model to understand the differential effects of HDM and SM. The results revealed that all mite species induced airway inflammation. Mice challenged with T. putrescentiae had the highest airway resistance and total cell, eosinophil, and neutrophil counts in the bronchoalveolar lavage fluid (BALF). The SM-sensitized groups showed more severe lesions and mucus hypersecretions than the HDM-sensitized groups. Although the degree of HDM and SM exposure was the same, the damage to the respiratory lung tissue was more severe in SM-exposed mice, which resulted in excessive mucin secretion and increased fibrosis. Furthermore, these findings suggest that SM sensitization induces a more significant hypersensitivity response in mucosal immunity than HDM sensitization in asthma models.

Keywords

Acknowledgement

We would like to thank Mr. Sung-Hyun Nam and Mr. In-Yong Lee for providing the HDM samples.

References

  1. Braman SS. The global burden of asthma. Chest 2006;130(Suppl):4-12. https://doi.org/10.1378/chest.130.1_suppl.4S
  2. Wong QYA, Lim JJ, Ng JY, Malipeddi P, Lim YYE, et al. An updated prevalence of asthma, its phenotypes, and the identification of the potential asthma risk factors among young Chinese adults recruited in Singapore. World Allergy Organ J 2023;16(3):100757. https://doi.org/10.1016/j.waojou.2023.100757
  3. Tauro S, Su YC, Thomas S, Schwarze J, Matthaei KI, et al. Molecular and cellular mechanisms in the viral exacerbation of asthma. Microbes Infect 2008;10(9):1014-1023. https://doi.org/10.1016/j.micinf.2008.07.037
  4. Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 2004;169(3):378-385. https://doi.org/10.1164/rccm.200308-1094OC
  5. Kim CR, Jeong KY, Yi MH, Kim HP, Shin HJ, et al. Cross-reactivity between group-5 and -21 mite allergens from Dermatophagoides farinae, Tyrophagus putrescentiae and Blomia tropicalis. Mol Med Rep 2015;12(4):5467-5474. https://doi.org/10.3892/mmr.2015.4093
  6. Wypych TP, Marzi R, Wu GF, Lanzavecchia A, Sallusto F. Role of B cells in TH cell responses in a mouse model of asthma. J Allergy Clin Immunol 2018;141(4):1395-1410. https://doi.org/10.1016/j.jaci.2017.09.001
  7. Reboux G, Valot B, Rocchi S, Scherer E, Roussel S, et al. Storage mite concentrations are underestimated compared to house dust mite concentrations. Exp Appl Acarol 2019;77(4):511-525. https://doi.org/10.1007/s10493-019-00376-2
  8. Arlian LG, Geis DP, Vyszenski-Moher DL, Bernstein IL, Gallagher JS. Antigenic and allergenic properties of the storage mite Tyrophagus putrescentiae. J Allergy Clin Immunol 1984;74(2):166-171. https://doi.org/10.1016/0091-6749(84)90281-1
  9. Morales M, Iraola V, Leonor JR, Bartra J, Rodriguez F, et al. Different sensitization to storage mites depending on the co-exposure to house dust mites. Ann Allergy Asthma Immunol 2015;114(1):36-42. https://doi.org/10.1016/j.anai.2014.10.005
  10. Yi MH, Kim M, Yong TS, Kim JY. Investigating the microbiome of house dust mites in South Korea. Front Allergy 2023;4:1240727. https://doi.org/10.3389/falgy.2023.1240727
  11. Jeong KY, Choi SY, Lee JH, Lee IY, Yong TS, et al. Standardization of house dust mite extracts in Korea. Allergy Asthma Immunol Res 2012;4(6):346-350. https://doi.org/10.4168/aair.2012.4.6.346
  12. Park JW, Taube C, Joetham A, Takeda K, Kodama T, et al. Complement activation is critical to airway hyperresponsiveness after acute ozone exposure. Am J Respir Crit Care Med 2004;169(6):726-732. https://doi.org/10.1164/rccm.200307-1042OC
  13. Jeong KY, Lee IY, Lee J, Ree HI, Hong CS, et al. Effectiveness of education for control of house dust mites and cockroaches in Seoul, Korea. Korean J Parasitol 2006;44(1):73-79. https://doi.org/10.3347/kjp.2006.44.1.73
  14. Munhbayarlah S, Park JW, Ko SH, Ree HI, Hong CS. Identification of Tyrophagus putrescentiae allergens and evaluation of cross-reactivity with Dermatophagoides pteronyssinus. Yonsei Med J 1998;39(2):109-115. https://doi.org/10.3349/ymj.1998.39.2.109
  15. Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P. Animal models of asthma: utility and limitations. J Asthma Allergy 2017;10:293-301. https://doi.org/10.2147/JAA.S121092
  16. Pomes A, Chapman MD, Wunschmann S. Indoor allergens and allergic respiratory disease. Curr Allergy Asthma Rep 2016;16(6):43. https://doi.org/10.1007/s11882-016-0622-9
  17. Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005-2009. Natl Health Stat Report 2011;2011(32):1-14.
  18. Ishmael FT. The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc 2011;111(Suppl):11-17. PMID 22162373
  19. National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 2007;120(Suppl):94-138. https://doi.org/10.1016/j.jaci.2007.09.043
  20. Ye L, Mou Y, Wang J, Jin ML. Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma. Oncotarget 2017;8(29):47533-47546. https://doi.org/10.18632/oncotarget.17258
  21. Reader JR, Tepper JS, Schelegle ES, Aldrich MC, Putney LF, et al. Pathogenesis of mucous cell metaplasia in a murine asthma model. Am J Pathol 2003;162(6):2069-2078. https://doi.org/10.1016/S0002-9440(10)64338-6
  22. Iuvone T, Den Bossche RV, D'Acquisto F, Carnuccio R, Herman AG. Evidence that mast cell degranulation, histamine and tumour necrosis factor alpha release occur in LPS-induced plasma leakage in rat skin. Br J Pharmacol 1999;128(3):700-704. https://doi.org/10.1038/sj.bjp.0702828
  23. MacLean JA, Sauty A, Luster AD, Drazen JM, De Sanctis GT. Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice. Am J Respir Cell Mol Biol 1999;20(3):379-387. https://doi.org/10.1165/ajrcmb.20.3.3291
  24. Hamelmann E, Takeda K, Schwarze J, Vella AT, Irvin CG, et al. Development of eosinophilic airway inflammation and airway hyperresponsiveness requires interleukin-5 but not immunoglobulin E or B lymphocytes. Am J Respir Cell Mol Biol 1999;21(4):480-489. https://doi.org/10.1165/ajrcmb.21.4.3659
  25. Tanaka H, Masuda T, Tokuoka S, Komai M, Nagao K, et al. The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflamm Res 2001;50(12):616-624. https://doi.org/10.1007/PL00000243
  26. Paul DL. New functions for gap junctions. Curr Opin Cell Biol 1995;7(5):665-672. https://doi.org/10.1016/0955-0674(95)80108-1
  27. Tovey ER, Chapman MD, Platts-Mills TA. Mite faeces are a major source of house dust allergens. Nature 1981;289(5798):592-593. https://doi.org/10.1038/289592a0
  28. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 2009;457(7229):585-588. https://doi.org/10.1038/nature07548
  29. Kim JY, Yi MH, Lee S, Lee IY, Yong D, et al. Microbiome and mycobiome interaction in house dust mites and impact on airway cells. Clin Exp Allergy 2021;51(12):1592-1602. https://doi.org/10.1111/cea.13962.
  30. Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, et al. IL-17 receptor signaling in the lung epithelium is required for mucosal chemokine gradients and pulmonary host defense against K. pneumoniae. Cell Host Microbe 2016;20(5):596-605. https://doi.org/10.1016/j.chom.2016.10.003
  31. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 2015;10(2):239-252. https://doi.org/10.1016/j.celrep.2014.12.017
  32. Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 cytokines and chronic lung diseases. Cells 2022;11(14):2132. https://doi.org/10.3390/cells11142132
  33. Bullens DM, Truyen E, Coteur L, Dilissen E, Hellings PW, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006;7(1):135. https://doi.org/10.1186/1465-9921-7-135
  34. Xia W, Bai J, Wu X, Wei Y, Feng S, et al. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway. PLoS One 2014;9(6):e98915. https://doi.org/10.1371/journal.pone.0098915
  35. Kanoh S, Tanabe T, Rubin BK. IL-13-induced MUC5AC production and goblet cell differentiation is steroid resistant in human airway cells. Clin Exp Allergy 2011;41(12):1747-1756. https://doi.org/10.1111/j.1365-2222.2011.03852.x
  36. Wang X, Li Y, Luo D, Wang X, Zhang Y, et al. Lyn regulates mucus secretion and MUC5AC via the STAT6 signaling pathway during allergic airway inflammation. Sci Rep 2017;7:42675. https://doi.org/10.1038/srep42675
  37. Yan F, Li W, Zhou H, Wu Y, Ying S, et al. Interleukin-13-in-duced MUC5AC expression is regulated by a PI3K-NFAT3 pathway in mouse tracheal epithelial cells. Biochem Biophys Res Commun 2014;446(1):49-53. https://doi.org/10.1016/j.bbrc.2014.02.051
  38. Nakagome K, Nagata M. Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx 2011;38(5):555-563. https://doi.org/10.1016/j.anl.2011.01.011