DOI QR코드

DOI QR Code

Identification of the protease inhibitory domain of Trichinella spiralis novel cystatin (TsCstN)

  • Thassanee Yuthithum (Department of Helminthology, Faculty of Tropical Medicine, Mahidol University) ;
  • Orawan Phuphisut (Department of Helminthology, Faculty of Tropical Medicine, Mahidol University) ;
  • Onrapak Reamtong (Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University) ;
  • Nathamon Kosoltanapiwat (Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University) ;
  • Salisa Chaimon (Department of Preclinical Science, Faculty of Medicine, Thammasat University) ;
  • Porntida Kobpornchai (Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University) ;
  • Charin Thawornkuno (Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University) ;
  • Preeyarat Malaithong (Department of Helminthology, Faculty of Tropical Medicine, Mahidol University) ;
  • Orathai Sawatdichaikul (Institute of Food Research and Product Development, Kasetsart University) ;
  • Poom Adisakwattana (Department of Helminthology, Faculty of Tropical Medicine, Mahidol University)
  • Received : 2024.03.28
  • Accepted : 2024.07.03
  • Published : 2024.08.31

Abstract

The Trichinella spiralis novel cystatin (TsCstN) inhibits cathepsin L (CatL) activity and inflammation of macrophages during lipopolysaccharide (LPS) induction. To identify the protease inhibitory region, this study applied an in silico modeling approach to simulate truncation sites of TsCstN (Ts01), which created four truncated forms, including TsCstN∆1-39 (Ts02), TsCstN∆1-71 (Ts03), TsCstN∆1-20, ∆73-117 (Ts04), and TsCstN∆1-20, ∆42-117 (Ts05). The superimposition of these truncates modeled with AlphaFold Colab indicated that their structures were more akin to Ts01 than those modeled with I-TASSER. Moreover, Ts04 exhibited the closest resemblance to the structure of Ts01. The recombinant Ts01 (rTs01) and truncated proteins (rTs02, rTs03, and rTs04) were successfully expressed in a prokaryotic expression system while Ts05 was synthesized, with sizes of approximately 14, 12, 8, 10, and 2.5 kDa, respectively. When determining the inhibition of CatL activity, both rTs01 and rTs04 effectively reduced CatL activity in vitro. Thus, the combination of the α1 and L1 regions may be sufficient to inhibit CatL. This study provides comprehensive insights into TsCstN, particularly regarding its protein function and inhibitory domains against CatL.

Keywords

Acknowledgement

This research project was supported by Mahidol University under the New Discovery and Frontier Research grant for Fiscal Year 2021 through Poom Adisakwattana (NDFR 03/2564).

References

  1. Murrell KD, Pozio E. Worldwide occurrence and impact of human trichinellosis, 1986-2009. Emerg Infect Dis 2011;17(12):2194-2202. https://doi.org/10.3201/eid1712.110896
  2. Despommier DD. How does Trichinella spiralis make itself at home? Parasitol Today 1998;14(8):318-323. https://doi.org/10.1016/s0169-4758(98)01287-3
  3. Fabre MV, Beiting DP, Bliss SK, Appleton JA. Immunity to Trichinella spiralis muscle infection. Vet Parasitol 2009;159(3-4):245-248. https://doi.org/10.1016/j.vetpar.2008.10.051
  4. Alvarez JI. Inhibition of toll like receptor immune responses by microbial pathogens. Front Biosci 2005;10:582-587. https://doi.org/10.2741/1554
  5. Aranzamendi C, Fransen F, Langelaar M, Franssen F, van der Ley P, et al. Trichinella spiralis-secreted products modulate DC functionality and expand regulatory T cells in vitro. Parasite Immunol 2012;34(4):210-223. https://doi.org/10.1111/j.1365-3024.2012.01353.x
  6. Kobpornchai P, Flynn RJ, Reamtong O, Rittisoonthorn N, Kosoltanapiwat N, et al. A novel cystatin derived from Trichinella spiralis suppresses macrophage-mediated inflammatory responses. PLoS Negl Trop Dis 2020;14(4):e0008192. https://doi.org/10.1371/journal.pntd.0008192
  7. Kobpornchai P, Tiffney EA, Adisakwattana P, Flynn RJ. Trichinella spiralis cystatin, TsCstN, modulates STAT4/IL-12 to specifically suppress IFN-γ production. Cell Immunol 2021;362:104303. https://doi.org/10.1016/j.cellimm.2021.104303
  8. Khatri V, Chauhan N, Prasanna Kumar SB, Kalyanasundaram R. Peptide fragments of cystatin protein from filarial parasite has potent anti-inflammatory effect on DSS-induced colitis in mouse. J Immunol 2020;204(Suppl):237.28. https://doi.org/10.4049/jimmunol.204.Supp.237.28
  9. Pikula M, Smuzynska M, Krzystyniak A, Zielinski M, Langa P, et al. Cystatin C peptidomimetic derivative with antimicrobial properties as a potential compound against wound infections. Bioorg Med Chem 2017;25(4):1431-1439. https://doi.org/10.1016/j.bmc.2017.01.004
  10. Hill M, Cox J. Cystatin C peptide effects on B16F10 melanoma cells. CellBio 2021;10:1-9. https://doi.org/10.4236/cellbio.2021.101001
  11. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23(21):2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  12. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000;16(4):404-405. https://doi.org/10.1093/bioinformatics/16.4.404
  13. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res 2015;43(W1):W389-394. doi: 10.1093/nar/gkv332
  14. Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993;232(2):584-599. https://doi.org/10.1006/jmbi.1993.1413
  15. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10(6):845-858. https://doi.org/10.1038/nprot.2015.053
  16. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acid Symposium Series 1999;41:95-98.
  17. Yang J, Yan R, Roy A, Xu D, Poisson J, et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015;12(1):7-8. https://doi.org/10.1038/nmeth.3213
  18. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596(7873):583-589. https://doi.org/10.1038/s41586-021-03819-2
  19. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26(2):283-291. https://doi.org/10.1107/S0021889892009944
  20. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46(W1):296-303. https://doi.org/10.1093/nar/gky427
  21. Khatri V, Chauhan N, Kalyanasundaram R. Parasite cystatin: immunomodulatory molecule with therapeutic activity against immune mediated disorders. Pathogens 2020;9(6):431. https://doi.org/10.3390/pathogens9060431
  22. Beard DK, Bristol S, Cosby K, Davis A, Manning C, et al. Crystal structure of a hypothetical protein from Giardia lamblia. Corrigendum. Acta Crystallogr F Struct Biol Commun 2022;78(3):143. https://doi.10.1107/S2053230X22001704
  23. Arakaki T, Le Trong I, Phizicky E, Quartley E, DeTitta G, et al. Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006;62(3):175-179. https://doi.10.1107/S1744309106005902
  24. Masamba P, Weber BW, Sewell BT, Kappo AP. Crystallization and preliminary structural determination of the universal stress G4LZI3 protein from Schistosoma mansoni. Inform Med Unlocked 2022;32:101057. https://doi.org/10.1016/j.imu.2022.101057
  25. Yang Z, Zeng X, Zhao Y, Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct Target Ther 2023;8(1):115. https://doi.org/10.1038/s41392-023-01381-z
  26. Ros-Lucas A, Martinez-Peinado N, Bastida J, Gascon J, Alonso-Padilla J. The use of AlphaFold for in silico exploration of drug targets in the parasite Trypanosoma cruzi. Front Cell Infect Microbiol 2022;12:944748. https://doi.org/10.3389/fcimb.2022.944748
  27. Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS, et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS One 2023;18(3):e0282689. https://doi.org/10.1371/journal.pone.0282689
  28. Honey K, Rudensky AY. Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 2003;3(6):472-482. https://doi.org/10.1038/nri1110
  29. Zhang T, Maekawa Y, Hanba J, Dainichi T, Nashed BF, et al. Lysosomal cathepsin B plays an important role in antigen processing, while cathepsin D is involved in degradation of the invariant chain inovalbumin-immunized mice. Immunology 2000;100(1):13-20. https://doi.org/10.1046/j.1365-2567.2000.00000.x
  30. Salat J, Paesen GC, Rezacova P, Kotsyfakis M, Kovarova Z, et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem J 2010;429(1):103-112. https://doi.org/10.1042/BJ20100280
  31. Shibuya K, Kaji H, Itoh T, Ohyama Y, Tsujikami A, et al. Human cystatin A is inactivated by engineered truncation. The?NH2-terminal region of the cysteine proteinase inhibitor is?essential for expression of its inhibitory activity. Biochemistry 1995;34(38):12185-12192. https://doi.org/10.1021/bi00038a012