DOI QR코드

DOI QR Code

Genetic structure of apical membrane antigen-1 in Plasmodium falciparum isolates from Pakistan

  • Komal Zaib (Department of Biochemistry Abdul Wali Khan University) ;
  • Asifullah Khan (Department of Biochemistry Abdul Wali Khan University) ;
  • Muhammad Umair Khan (Department of Biochemistry Abdul Wali Khan University) ;
  • Ibrar Ullah (Department of Biochemistry Abdul Wali Khan University) ;
  • Tuan Cuong Vo (Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine) ;
  • Jung-Mi Kang (Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine) ;
  • Huong Giang Le (Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine) ;
  • Byoung-Kuk Na (Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine) ;
  • Sahib Gul Afridi (Department of Biochemistry Abdul Wali Khan University)
  • Received : 2024.03.28
  • Accepted : 2024.07.03
  • Published : 2024.08.31

Abstract

Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant (NRF-2024M3A9H5043141).

References

  1. World Health Organization. World Malaria Report 2022. World Health Organization. Geneva, Switzerland. 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 
  2. Richards JS, Beeson JG. The future for blood-stage vaccines against malaria. Immunol Cell Biol 2009;87(5):377-390. https://doi.org/10.1038/icb.2009.27 
  3. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 2002;419(6906):520-526. https://doi.org/10.1038/nature01107 
  4. Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, et al. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 2009;1(2):2ra5. https://doi.org/10.1126/scitranslmed.3000257 
  5. Escalante AA, Lal AA, Ayala FJ. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 1998;149(1):189-202. https://doi.org/10.1093/genetics/149.1.189 
  6. Healer J, Crawford S, Ralph S, McFadden G, Cowman AF. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. Infect Immun 2002;70(10):5751-5758. https://doi.org/10.1128/IAI.70.10.5751-5758.2002 
  7. Silvie O, Franetich JF, Charrin S, Mueller MS, Siau A, et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Biol Chem 2004;279(10):9490-9496. https://doi.org/10.1074/jbc.M311331200 
  8. Hodder AN, Crewther PE, Matthew ML, Reid GE, Moritz RL, et al. The disulfide bond structure of Plasmodium apical membraneantigen-1. J Biol Chem 1996;271:29446-29452. https://doi.org/10.1074/jbc.271.46.29446 
  9. Udhayakumar V, Kariuki S, Kolczack M, Girma M, Roberts JM, et al. Longitudinal study of natural immune responses to the Plasmodium falciparum apical membrane antigen (AMA1) in a holoendemic region of malaria in western Kenya: Asembo Bay Cohort Project VIII. Am J Trop Med Hyg 2001;65(2):100-107. https://doi.org/10.4269/ajtmh.2001.65.100 
  10. Moncunill G, Aponte JJ, Nhabomba AJ, Dobano C. Performance of multiplex commercial kits to quantify cytokine and chemokine responses in culture supernatants from Plasmodium falciparum stimulations. PLoS One 2013;8(1):e52587. https://doi.org/10.1371/journal.pone.0052587 
  11. Rodrigues MH, Rodrigues KM, Oliveira TR, Comodo AN, Rodrigues MM, et al. Antibody response of naturally infected individuals to recombinant Plasmodium vivax apical membrane antigen-1. Int J Parasitol 2005;35(2):185-192. https://doi.org/10.1016/j.ijpara.2004.11.003 
  12. Gentil EC, Damgaard A, Hauschild M, Finnveden G, Eriksson O, et al. Models for waste life cycle assessment: review of technical assumptions. Waste Manag 2010;30(12):2636-2648. https://doi.org/10.1016/j.wasman.2010.06.004 
  13. Remarque EJ, Faber BW, Kocken CH, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol 2008;24(2):74-84. https://doi.org/10.1016/j.pt.2007.12.002 
  14. Thera MA, Coulibaly D, Kone AK, Guindo AB, Traore K, et al. Phase 1 randomized controlled trial to evaluate the safety and immunogenicity of recombinant Pichia pastoris-expressed Plasmodium falciparum apical membrane antigen 1 (PfAMA1-FVO [25-545]) in healthy Malian adults in Bandiagara. Malar J 2016;15(1):442. https://doi.org/10.1186/s12936-016-1466-4 
  15. Volkman SK, Neafsey DE, Schaffner SF, Park DJ, Wirth DF. Harnessing genomics and genome biology to understand malaria biology. Nat Rev Genet 2012;13(5):315-328. https://doi.org/10.1038/nrg3187 
  16. Khan MI, Qureshi H, Bae SJ, Khattak AA, Anwar MS, et al. Malaria prevalence in Pakistan: a systematic review and metaanalysis (2006-2021). Heliyon 2023;9(4):e15373. https://doi.org/10.1016/j.heliyon.2023.e15373 
  17. Afridi SG, Irfan M, Ahmad H, Aslam M, Nawaz M, et al. Population genetic structure of domain I of apical membrane antigen-1 in Plasmodium falciparum isolates from Hazara division of Pakistan. Malar J 2018;17(1):389. https://doi.org/10.1186/s12936-018-2539-3 
  18. Kang JM, Lee J, Moe M, Jun H, Le HG, et al. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates. Malar J 2018;17(1):71. https://doi.org/10.1186/s12936-018-2215-7 
  19. Kang JM, Le HG, Vo TC, Naw H, Yoo WG, et al.Genetic polymorphism and natural selection of apical membrane antigen-1 in Plasmodium falciparum isolates from Vietnam. Genes (Basel) 2021;12(12):1903. https://doi.org/10.3390/genes12121903 
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30(12):2725-2729. https://doi.org/10.1093/molbev/mst197 
  21. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 2017;34(12):3299-3302. https://doi.org/10.1093/molbev/msx248 
  22. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 2005;1(4):47-50. https://doi.org/10.1111/j.1755-0998.2010.02847.x 
  23. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999;16(1):37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 
  24. Penn O, Privman E, Ashkenazy H, Landan G, Graur D, et al. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res 2010;38(Web Server issue):23-28. https://doi.org/10.1093/nar/gkq443 
  25. Privman E, Penn O, Pupko T. Improving the performance of positive selection inference by filtering unreliable alignment regions. Mol biol and Evol 2012;29(1):1-5. https://doi.org/10.1093/molbev/msr177 
  26. Kosakovsky Pond SL, Frost SDW. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005;21(10):2531-2533. https://doi.org/10.1093/bioinformatics/bti320 
  27. Delport W, Poon AFY, Frost SDW, Kosakobsky Pond SL. Kosakovsky Pond, Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010;26(19):2455-2457. https://doi.org/10.1093/bioinformatics/btq429 
  28. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet 2012; 8(7):1-10. https://doi.org/10.1371/journal.pgen.1002764 
  29. RTS,S Clinical Trials Partnership; Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med 2011;365(20):1863-1875. https://doi.org/10.1056/NEJMoa1102287 
  30. Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Engl J Med 2015;373(21):2025-2037. https://doi.org/10.1056/NEJMoa1505819 
  31. Beeson JG, Kurtovic L, Valim C, Asante KP, Boyle MJ, et al. The RTS,S malaria vaccine: current impact and foundation for the future. Sci Transl Med 2022;14(671):eabo6646. https://doi.org/10.1126/scitranslmed.abo6646 
  32. Boes A, Spiegel H, Kastilan R, Bethke S, Voepel N, et al. Analysis of the dose-dependent stage-specific in vitro efficacy of a multi-stage malaria vaccine candidate cocktail. Malar J 2016;15(1):279. https://doi.org/10.1186/s12936-016-1328-0 
  33. Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, et al. Advancements and challenges in developing malaria vaccines: targeting multiple stages of the parasite life cycle. ACS Infect Dis 2023;9(10):1795-1814. https://doi.org/10.1021/acsinfecdis.3c00332 
  34. Bai T, Becker M, Gupta A, Strike P, Murphy VJ, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci U S A 2005;102(36):12736-12741. https://doi.org/10.1073/pnas.0501808102 
  35. Zhu X, Zhao Z, Feng Y, Li P, Liu F, et al. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area. Infect Genet Evol 2016;39:155-162. https://doi.org/10.1016/j.meegid.2016.01.021 
  36. Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol 2002;11(2):155-165. https://doi.org/10.1046/j.0962-1083.2001.01436.x