DOI QR코드

DOI QR Code

Nano-silica in Holcim general use cement mortars: A comparative study with traditional and prefabricated mortars

  • Mohammadfarid Alvansazyazdi (Institute of Science and Concrete Technology, ICITECH, Universitat Politecnica de Valencia) ;
  • Jorge Figueroa (Faculty of Engineering and Applied Sciences, School of Civil Engineering, Central University of Ecuador) ;
  • Alex Paucar (Faculty of Engineering and Applied Sciences, School of Civil Engineering, Central University of Ecuador) ;
  • Gilson Robles (Faculty of Engineering and Applied Sciences, School of Civil Engineering, Central University of Ecuador) ;
  • Majid Khorami (Faculty of Architecture and Urban Planning, University of UTE) ;
  • Pablo M. Bonilla-Valladares (Faculty of Chemical Sciences, Central University of Ecuador) ;
  • Alexis Debut (Department of Life Sciences and Agriculture, Center for Nanoscience and Nanotechnology, University of the Armed Forces ESPE) ;
  • Mahdi Feizbahr (School of Civil Engineering, Engineering Campus, University Sains Malaysia)
  • 투고 : 2023.09.30
  • 심사 : 2024.04.17
  • 발행 : 2024.03.25

초록

Nano-silica's growing use in construction, known for enhancing strength and durability by reducing porosity, drives this research's significance, especially considering Ecuador's reliance on cement in construction. A comprehensive comparative study on mortars made with General Use cement and aggregates from Pifo and San Antonio quarries has been studied. It explores the impact of incorporating nano-silica in varying proportions (0.75%, 1.00%, 1.25%) on mortar properties, contrasting them with conventional and prefabricated mortars. laboratory Testing is conducted according to standards to assess both fresh and hardened state properties, and microscopic analysis reveals the optimal nano-silica proportion's effects on mortar characteristics. Results shows that Incorporating 0.75% nano-silica resulted in a 61% increase in compressive strength at 7 days and. For a nanosilica content of 1.25%, a 14% increase in compressive strength was observed at 28 days in relation to the conventional mortar and the permeability of the mortar decreased by 30% when adding 0.75% nanosilica. It discusses economic viability and provides insights through SEM and EDS analyses. Overall, it underscores nano-silica's potential to enhance mortar properties and its relevance in creating more efficient and durable construction materials.

키워드

과제정보

We would like to express our gratitude to Dr. Alexis Debut from the Center for Nanoscience and Nanotechnology, Armed Forces University ESPE, for his support, as well as to the laboratory staff. We would also like to thank the personnel of INECYC and the material testing laboratory at the Central University of Ecuador.

참고문헌

  1. Abd Elrahman, M., Chung, S.-Y., Sikora, P., Rucinska, T. and Stephan, D.J.M. (2019), "Influence of nanosilica on mechanical properties, sorptivity, and microstructure of lightweight concrete", Materials, 12(19), 3078. https://doi.org/10.3390/ma12193078
  2. Abhilash, P., Nayak, D.K., Sangoju, B., Kumar, R., Kumar, V.J.C. and Materials, B. (2021), "Effect of nano-silica in concrete; a review", Constr. Build. Mater., 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347
  3. Adarsh, S. and Ray-Chaudhuri, S. (2021), "Multi-sensor data fusion by least squares estimation for structural health monitoring", FUTURISTIC TECHNOLOGIES.
  4. Alqamish, H.H. and Al-Tamimi, A.K.J.A.S. (2021), "Development and evaluation of nano-silica sustainable concrete", Appl. Sci., 11(7), 3041. https://doi.org/10.3390/app11073041
  5. Alvansaz, M.F., Arico, B.A. and Arico, J.A.J.I. (2022a), "Ecofriendly concrete pavers made with silica fume and nanosilica additions", INGENIO, 5(1), 34-42. https://doi.org/10.29166/ingenio.v5i1.3784
  6. Alvansaz, M.F., Bombon, C. and Rosero, B.J.I. (2022b), "Estudio de la incorporacion de nano silice en concreto de alto desempeno (HPC)", INGENIO, 5(1), 12-21. https://doi.org/10.29166/ingenio.v5i1.3786
  7. Alvansazyazdi, M., Farinango, D., Yaucan, J., Cadena, A., Santamaria, J., Bonilla, P.M., Leon, M., Debut, A., Feizbahr, M., Torres, L. and Ayala, B. (2024a), "Exploring crack reduction in high-performance concrete: The impact of nano-silica, polypropylene, and 4d metallic fibers", Int. J. Eng. Technol. Sci., 2024, 1-12.
  8. Alvansazyazdi, M., Fraga, J., Torres, E., Bravo, G., Santamaria, J., Leon, M. and Yuric, R. (2024b), "Comparative analysis of a mortar for plastering with hydraulic cement type HS incorporating nano-iron vs cement-based mortar for masonry type N", Int. J. Eng. Technol. Sci., 2024, 1-12.
  9. Alvansazyazdi, M., Villalba, A., Saltos, S., Santamaria, J., Cadena, A., Leon, M., Leon, L., Bonilla-Valladarese, P.M., Herediab, B., Buchelib, J. and Debut, A. (2024c), "Enhancing sustainable construction: An evaluation of nano-graphene's effectiveness in mortar composition", Int. J. Eng. Technol. Sci., 2024, 1-18.
  10. Asli, H.H. and Arabani, M. (2022), "Analysis of strain and failure of asphalt pavement", Computat. Res. Progress Appl. Sci. Eng., 8(01), 1-11.
  11. ASTM, C. (2011), Standard performance specification for hydraulic cement; West Conshohocken, PA, USA.
  12. Barrionuevo Castaneda, A.A. and Tapia Vargas, J.F. (2021), Estudio de un hormigon eco-amigable de alto desempeno (hpc) fabricado con la incorporacion de una mezcla entre micro-nano silice; Quito: UCE.
  13. Berra, M., Carassiti, F., Mangialardi, T., Paolini, A., Sebastiani, M.J.C. and Materials, B. (2012), "Effects of nanosilica addition on workability and compressive strength of portland cement pastes", Constr. Build. Mater., 35, 666-675. https://doi.org/10.1016/j.conbuildmat.2012.04.132
  14. Bi, J., Pane, I., Hariandja, B. and Imran, I. (2012), "The use of nanosilica for improving of concrete compressive strength and durability", In: Applied Mechanics and Materials, pp. 4059-4062.
  15. Casini, M. (2016), Smart buildings: Advanced materials and nanotechnology to improve energy-efficiency and environmental performance, Woodhead Publishing.
  16. Chen, C., Justice, R.S., Schaefer, D.W. and Baur, J.W. (2008), "Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties", Polymer, 49(17), 3805-3815. https://doi.org/10.1016/j.polymer.2008.06.023
  17. Chen, C., Wang, H., Xue, Y., Xue, Z., Liu, H., Xie, X. and Mai, Y.W. (2016), "Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/agnws nanocomposites", Compos. Sci. Technol., 128, 207-214. https://doi.org/10.1016/j.compscitech.2016.04.005
  18. Chithra, S., Kumar, S.S., Chinnaraju, K.J.C. and Materials, B. (2016), "The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate", Constr. Build. Mater., 113, 794-804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
  19. Choobbasti, A.J., Vafaei, A. and Kutanaei, S.S. (2015), "Mechanical properties of sandy soil improved with cement and nanosilica", Open Eng., 5(1). https://doi.org/10.1515/eng-2015-0011
  20. Duran, A., Navarro-Blasco, I., Fernandez, J., Alvarez, J.J.C. and Materials, B. (2014), "Long-term mechanical resistance and durability of air lime mortars with large additions of nanosilica", Constr. Build. Mater., 58, 147-158. https://doi.org/10.1016/j.conbuildmat.2014.02.030
  21. Esmaeili, J. and Andalibi, K. (2013), "Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica", Int. J. Nano Dimens., 3(4), 321-328.
  22. Feizbahr, M., Jayaprakash, J., Jamshidi, M. and Keong, C. (2013), "Review on various types and failures of fibre reinforcement polymer", Middle-East J. Scientif. Res., 13(10), 1312-1318. https://doi.org/10.5829/idosi.mejsr.2013.13.10.1180
  23. Feizbahr, M., Mirhosseini, S.M. and Joshaghani, A.H. (2020), "Improving the performance of conventional concrete using multi-walled carbon nanotubes", Express Nano Lett., 1(1), 1-9.
  24. Ferdosi, S.B. and Abasi, M. (2022), "Axial buckling of single-walled nanotubes simulated by an atomistic finite element model under different temperatures and boundary conditions", Int. J. Sci. Eng. Appl., 11(11), 151-163. https://doi.org/10.7753/IJSEA1111.1002
  25. Garcia-Taengua, E., Sonebi, M., Hossain, K.M.A., Lachemi, M. and Khatib, J. (2015), "Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars", Compos. Part B: Eng., 81, 120-129. https://doi.org/10.1016/j.compositesb.2015.07.009
  26. Gonzalez de la Cadena, J.F. (2016), "Estudio del mortero de pega usado en el canton cuenca. Propuesta de mejora, utilizando adiciones de cal".
  27. Guneyisi, E., Gesoglu, M., Azez, O.A. and Oz, H.O. (2016), "Effect of nano silica on the workability of self-compacting concretes having untreated and surface treated lightweight aggregates", Constr. Build. Mater., 115, 371-380. https://doi.org/10.1016/j.conbuildmat.2016.04.055
  28. INEN, N. (2009), 2502, cemento hidraulico, Determinacion del flujo de morteros. INEN.
  29. INEN, N. (2010), 2518, morteros para unidades de mamposteria. Requisitos, ecuador. Instituto Ecuatoriano de Normalizacion.
  30. INEN, N. (2011a), 2380, cemento hidraulico, Requisitos de desempeno para cementos hidraulicos, Ecuador, Instituto Ecuatoriano de Normalizacion.
  31. INEN, N.T.E. (2011b), "Nte inen 862: 2011 aridos para hormigon", Determinacion del Contenido Total de Humedad. Recuperado de http://181.112, 149.
  32. Li, L., Xuan, D., Sojobi, A.O., Liu, S., Chu, S., Poon, C.S.J.C. and Composites, C. (2021), "Development of nano-silica treatment methods to enhance recycled aggregate concrete", Cement Concrete Compos., 118, 103963. https://doi.org/10.1016/j.cemconcomp.2021.103963
  33. Morales, L., Alvansazyazdi, F., Landazuri, P. and Vasconez, W. (2020), "Prevencion de la contaminacion por la fabricacion de hormigones con nanoparticulas", Rev. Iberica Sist. E Tecnol. Informacao E, 30, 309-324.
  34. Oruji, S., Brake, N.A., Hosseini, S., Adesina, M. and Nikookar, M. (2023), "Enhancing recycled aggregate concrete using a three-stage mixed coal bottom ash slurry coating", J. Mater. Civil Eng., 35(5), 04023061. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004723
  35. Porbashiri, M. and Ferdosi, S.B. (2022), "Calculation of the single-walled carbon nanotubes' elastic modulus by using the asymptotic homogenization method", equilibrium, 11(12), 254-265. https://doi.org/10.7753/IJSEA1112.1002
  36. Qu, L. and AV Morton, D. (2015), "Particle engineering via mechanical dry coating in the design of pharmaceutical solid dosage forms", Current Pharmaceut. Des., 21(40), 5802-5814. https://doi.org/10.2174/1381612821666151008151001
  37. Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T.B. and Hadi, A.E. (2021), "The effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement", Polymers, 13(13), 2178. https://doi.org/10.3390/polym13132178
  38. Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
  39. Sanchez de Guzman, D. (2001), Tecnologia del concreto y del mortero (bhandar-editores ed. Argentina.
  40. Shaikh, F.U.A., Supit, S.W.M. and Sarker, P.K. (2014), "A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes", Mater. Des., 60, 433-442. https://doi.org/10.1016/j.matdes.2014.04.025
  41. Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials-a review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052
  42. Tadayon, M.K.M., Sepehri, H. and Sepehri, M. (2010), "Influence of nano-silica particles on mechanical properties and permeability of concrete", In: The 2nd International Conference on Sustainable Constr. Mater. Technol., pp. 1-7.
  43. Taherkhani, H., Afroozi, S. and Javanmard, S. (2017), "Comparative study of the effects of nanosilica and zyco-soil nanomaterials on the properties of asphalt concrete", J. Mater. Civil Eng., 29(8), 04017054. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001889
  44. Tarangini, D., Sravana, P. and Rao, P.S. (2022), "Effect of nano silica on frost resistance of pervious concrete", Mater. Today: Proceedings, 51, 2185-2189. https://doi.org/10.1016/j.matpr.2021.11.132
  45. Wei, H., Guo, L., Zheng, J., Huang, G. and Li, G. (2015), "Effect of nanosilica-based immobile antioxidant on thermal oxidative degradation of sbr", Rsc Adv., 5(77), 62788-62796. https://doi.org/10.1039/C5RA08951D
  46. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y.J.N. (2021), "Effect of nano silica particles on impact resistance and durability of concrete containing coal fly ash", Nanomater., 11(5), 1296. https://doi.org/10.3390/nano11051296