DOI QR코드

DOI QR Code

Flexural evaluation of Textile Reinforced Concrete Panel (TRC) with mesh pre-stretching effect

  • Rose Dayaana Amran (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya) ;
  • Irvin Liow Jun Ann (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya) ;
  • Geok Wen Leong (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya) ;
  • Chee Ghuan Tan (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya) ;
  • Kim Hung Mo (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya) ;
  • Kok Seng Lim (Photonics Research Centre, Universiti Malaya) ;
  • Fadzli Mohamed Nazri (School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia)
  • Received : 2023.08.18
  • Accepted : 2024.07.16
  • Published : 2024.03.25

Abstract

Textile reinforced concrete (TRC) has gained attention as a viable alternative to conventional reinforced concrete due to its improved mechanical properties and design adaptability. Despite significant research into the mechanical properties of TRC, studies regarding the flexural effect of pre-stretching with different numbers of textile reinforcements are currently limited. Therefore, this research focuses on assessing the flexural characteristics of TRC panels with the incorporation of mesh pre-stretching. Additionally, the study compares the flexural behaviour between alkali-resistant (AR) glass fibre TRC and carbon fibre TRC. A three-point bending test was conducted to assess the flexural behaviour of TRC, investigating the impact of the number of textile layers and the application of pre-stretching on flexural strength and post-cracking stiffness. The findings, exhibited by the flexural stress vs. displacement curve, indicate that applying pre-stretching to carbon fibre TRC effectively increases the flexural strength of carbon textiles and enhances post-cracking stiffness. Moreover, the greater the number of carbon textiles, the higher the flexural stress of the specimens, provided the textiles are placed in the tensile zone. Nevertheless, when comparing carbon fibre TRC with AR glass fibre TRC, it is found that the increase in flexural strength is more significant for carbon fibre TRC. Overall, applying pre-stretching to carbon fibre significantly improves the TRC's flexural performance, specifically during the post-cracking stage and in crack distribution. Furthermore, due to the higher elastic modulus and tensile strength of carbon fibre, TRC reinforced with carbon textiles shows greater flexural strength and ductility compared to AR glass fibre TRC.

Keywords

Acknowledgement

The authors are gratefully acknowledged the Fundamental Research Grant Scheme (FRGS/1/2020/TK01/UM/02/2) provided by Ministry of Higher Education in supporting this works.

References

  1. Archila, H., Kaminski, S., Trujillo, D., Zea Escamilla, E. and Harries, K.A. (2018), "Bamboo reinforced concrete: a critical review", Mater. Struct./Materiaux et Construct., 51(4), 1-18. https://doi.org/10.1617/s11527-018-1228-6
  2. Attia, M.M., Al Sayed, A.A.K.A., Tayeh, B.A. and Shawky, S.M.M. (2022), "Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study", Adv. Concrete Constr., Int. J., 14(5), 355-368. https://doi.org/10.12989/acc.2022.14.5.355
  3. Barhum, R. and Mechtcherine, V. (2012), "Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading", Eng. Fract. Mech., 92, 56-71. https://doi.org/10.1016/j.engfracmech.2012.06.001
  4. Butler, M., Mechtcherine, V. and Hempel, S. (2010), "Durability of textile reinforced concrete made with AR glass fibre: Effect of the matrix composition", Mater. Struct./Materiaux et Construct., 43(10), 1351-1368. https://doi.org/10.1617/s11527-010-9586-8
  5. Cheng, A., Huang, R., Wu, J.K. and Chen, C.H. (2005), "Effect of rebar coating on corrosion resistance and bond strength of reinforced concrete", Constr. Build. Mater., 19(5), 404-412. https://doi.org/10.1016/j.conbuildmat.2004.07.006
  6. Colombo, I.G., Magri, A., Zani, G., Colombo, M. and di Prisco, M. (2013), "Erratum to: Textile Reinforced Concrete: experimental investigation on design parameters", Mater. Struct., 46(11), 1953-1971. https://doi.org/10.1617/s11527-013-0023-7
  7. Du, Y., Zhang, X., Liu, L., Zhou, F., Zhu, D. and Pan, W. (2018a), "Flexural behaviour of carbon textile-reinforced concrete with prestress and steel fibres", Polymers, 10(1). https://doi.org/10.3390/POLYM10010098
  8. Du, Y., Zhang, X., Zhou, F., Zhu, D., Zhang, M. and Pan, W. (2018b), "Flexural behavior of basalt textile-reinforced concrete", Constr. Build. Mater., 183, 7-21. https://doi.org/10.1016/j.conbuildmat.2018.06.165
  9. Gopinath, S., Murthy, A.R., Iyer, N.R. and Prabha, M. (2015), "Behaviour of reinforced concrete beams strengthened with basalt textile reinforced concrete", J. Industr. Textil., 44(6), 924-933. https://doi.org/10.1177/1528083714521068
  10. Gries, T., Raina, M., Quadflieg, T. and Stolyarov, O. (2016), "Manufacturing of textiles for civil engineering applications", In: Textile Fibre Composites in Civil Engineering (pp. 3-24). https://doi.org/10.1016/B978-1-78242-446-8.00002-1
  11. Halvaei, M., Jamshidi, M., Latifi, M. and Ejtemaei, M. (2020a), "Effects of volume fraction and length of carbon short fibers on flexural properties of carbon textile reinforced engineered cementitious composites (ECCs); an experimental and computational study", Constr. Build. Mater., 245, 118394. https://doi.org/10.1016/j.conbuildmat.2020.118394
  12. Halvaei, M., Jamshidi, M., Latifi, M. and Ejtemaei, M. (2020b), "Experimental investigation and modelling of flexural properties of carbon textile reinforced concrete", Constr. Build. Mater., 262, 120877. https://doi.org/10.1016/j.conbuildmat.2020.120877
  13. Hegger, J. and Voss, S. (2008), "Investigations on the bearing behaviour and application potential of textile reinforced concrete", Eng. Struct., 30(7), 2050-2056. https://doi.org/10.1016/j.engstruct.2008.01.006
  14. Hegger, J., Horstmann, M. and Zell, M. (2008), "Textile Reinforced Concrete - Realization in applications", Tailor Made Concrete Struct., p. 98. https://doi.org/10.1201/9781439828410.ch61
  15. Hosseini, S.A. (2022), "Seawater curing effects on the permeability of concrete containing fly ash", Adv. Concrete Constr., Int. J., 14(3), 205-214. https://doi.org/10.12989/acc.2022.14.3.205
  16. Khan, M.U., Ahmad, S., Al-Osta, M.A., Algadhib, A.H. and Al-Gahtani, H.J. (2023), "Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation", Adv. Concrete Constr., Int. J., 15(3), 161-170. https://doi.org/10.12989/acc.2023.15.3.161
  17. Koutas, L.N., Tetta, Z., Bournas, D.A. and Triantafillou, T.C. (2019), "Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review", J. Compos. Constr., 23(1), 03118001. https://doi.org/10.1061/(asce)cc.1943-5614.0000882
  18. Li, V.C. (2008), "Engineered cementitious composite (ECC): Material, structural, and durability performance", In: Concrete Construction Engineering Handbook, Second Edition (Issue June 2011).
  19. Meskhi, B., Beskopylny, A.N., Stel'makh, S.A., Shcherban', E.M., Mailyan, L.R., Beskopylny, N. and Dotsenko, N. (2022), "Theoretical and experimental substantiation of the efficiency of combined-reinforced glass fiber polymer composite concrete elements in bending", Polymers, 14(12). https://doi.org/10.3390/polym14122324
  20. Meyer, C. and Vilkner, G. (2003), "Glass Concrete Thin Sheets Prestressed with Aramid Fiber Mesh", Int. Workshop High Perform. Fiber Reinf. Cement Compos., 1-12.
  21. Mohan, A. and Madhavi, T.C. (2024), "Flexural behavior of warp knitted textile reinforced concrete impregnated with cementitious binder", Case Stud. Constr. Mater., 20(January), e02884. https://doi.org/10.1016/j.cscm.2024.e02884
  22. Panzera, T.H., Christoforo, A.L. and Ribeiro Borges, P.H. (2013), "High performance fibre-reinforced concrete (FRC) for civil engineering applications", Adv. Fibre-Reinf. Poml. (FRP) Compos. Struct. Applicat., 552-581. https://doi.org/10.1533/9780857098641.4.552
  23. Park, J., Kim, T., You, J., Hong, S. and Park, S. (2017), "Flexural strength of alkali resistant glass textile reinforced concrete beam with prestressing", Int. J. Civil Environ. Eng., 11(7), 988-992.
  24. Rahim, N.L., Ibrahim, N.M., Salehuddin, S., Mohammed, S.A. and Othman, M.Z. (2020), "Investigation of bamboo as concrete reinforcement in the construction for low-cost housing industry", In: IOP Conference Series: Earth and Environmental Science, 476(1). https://doi.org/10.1088/1755-1315/476/1/012058
  25. Ramesh, A., Rajeev, P., Xu, S., Sanjayan, J. and Lu, G. (2024), "Impact response of textile-reinforced 3D printed concrete panels", Eng. Struct., 315(December 2023), 118489. https://doi.org/10.1016/j.engstruct.2024.118489
  26. Rebecca, M. de C.S. and Flavio, A.S. (2020), "Carbon textile reinforced concrete: materials and structural analysis", Mater. Struct./Materiaux et Constr., 53(1). https://doi.org/10.1617/s11527-020-1448-4
  27. Venkatesan, P., Palaniswamy, N. and Rajagopal, K. (2006), "Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment", Progress Organ. Coat., 56(1), 8-12. https://doi.org/10.1016/j.porgcoat.2006.01.011
  28. Vilkner, G. (2004), "Glass concrete thin sheets reinforced with prestressed aramid fabrics", Ph.D. Dissertation; Columbia University, New York, NY.