References
- Alam, M. G. R., Haque, M., Hassan, M. R., Huda, S., Hassan, M. M., Strickland, F. L. and AlQahtani, S. A.(2023), "Feature cloning and feature fusion based transportation mode detection using convolutional neural network", IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp.4671-4681. https://doi.org/10.1109/TITS.2023.3240500
- Anda, C., Erath, A. and Fourie, P. J.(2017), "Transport modelling in the age of big data", International Journal of Urban Sciences, vol. 21, no. sup1, pp.19-42. https://doi.org/10.1080/12265934.2017.1281150
- Andersson, A., Engelson, L., Borjesson, M., Daly, A. and Kristoffersson, I.(2022), "Long-distance mode choice model estimation using mobile phone network data", Journal of Choice Modelling, vol. 42, 100337.
- Bandyopadhyay, S., Datta, A., Ramakrishnan, R. K. and Pal, A.(2024), "Generalizable journey mode detection using unsupervised representation learning", IEEE Transactions on Intelligent Transportation Systems.
- Brandle, N.(2021), "Inferring modal split from mobile phones: Principles", Issues and Policy Recommendations.
- Breyer, N., Gundlegard, D. and Rydergren, C.(2021), "Travel mode classification of intercity trips using cellular network data", Transportation Research Procedia, vol. 52, pp.211-218. https://doi.org/10.1016/j.trpro.2021.01.024
- Bwambale, A., Choudhury, C. F., Hess, S. and Iqbal, M.(2021), "Getting the best of both worlds: A framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling", Transportation, vol. 48, no. 5, pp.2287-2314. https://doi.org/10.1007/s11116-020-10129-5
- Chen, C., Bian, L. and Ma, J.(2014), "From traces to trajectories: how well can we guess activity locations from mobile phone traces?", Transportation Research Part C: Emerging Technologies, vol. 46, pp.326-337. https://doi.org/10.1016/j.trc.2014.07.001
- Chen, C., Ma, J., Susilo, Y., Liu, Y. and Wang, M.(2016), "The promises of big data and small data for travel behavior (aka human mobility) analysis", Transportation Research Part C: Emerging Technologies, vol. 68, pp.285-299. https://doi.org/10.1016/j.trc.2016.04.005
- Cho, S. H., Seo, Y. H., Kho, S. Y. and Rhee, S. M.(2017), "Estimation of interregional mode choice models and value of travel time accommodating taste variation of individuals", Journal of the Korean Society for Railway, vol. 20, no. 2, pp.288-298. https://doi.org/10.7782/JKSR.2017.20.2.288
- Currans, K. M. and Clifton, K. J.(2015), "Using household travel surveys to adjust ITE trip generation rates", Journal of Transport and Land Use, vol. 8, no. 1, pp.85-119. https://doi.org/10.5198/jtlu.2015.470
- Doyle, J., Hung, P., Kelly, D., McLoone, S. F. and Farrell, R.(2011), Utilising mobile phone billing records for travel mode discovery.
- Engelson, L.(2021), Long-distance mode choice model estimation using mobile phone network data.
- Eromietse, E. J. and Joseph, O. O.(2019), "Comparative assessment of radial basis function neural network and multiple linear regression application to trip generation modelling in Akure Nigeria", International Journal for Traffic & Transport Engineering, vol. 9, no. 2, pp.163-176. https://doi.org/10.7708/ijtte.2019.9(2).03
- Etu, J. E. and Oyedepo, O. J.(2018), "Forecasting trip generation for high density residential zones of Akure, Nigeria: Comparability of artificial neural network and regression models", Journal of Civil Engineering, Science and Technology, vol. 9, no. 2, pp.76-86. https://doi.org/10.33736/jcest.988.2018
- Fourez, T., Verstaevel, N., Migeon, F., Schettini, F. and Amblard, F.(2023), Transport mode detection on GPS and accelerometer data: A temporality based workflow.
- Jiang, S., Ferreira, J. and Gonzalez, M. C.(2017), "Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore", IEEE Transactions on Big Data, vol. 3, no. 2, pp.208-219. https://doi.org/10.1109/TBDATA.2016.2631141
- Jun, S. H.(2011), "A new statistical sampling method for reducing computing time of machine learning algorithms", Journal of The Korean Institute of Intelligent Systems, vol. 21, no. 2, pp.171-177. https://doi.org/10.5391/JKIIS.2011.21.2.171
- Kalatian, A. and Shafahi, Y.(2016), "Travel mode detection exploiting cellular network data", In MATEC Web of Conferences, EDP Sciences, vol. 81, 03008.
- Kim, J. Y., Kim, S. J., Lee, G. J. and Choo, S. H.(2021a) "Estimating a mode choice model considering shared E-scooter service-Focused on access travel and neighborhood travel", The Journal of Korea Institute of Intelligent Transport Systems, vol. 20, no. 1, pp.22-39. https://doi.org/10.12815/kits.2021.20.1.22
- Kim, K. H., Lee, D. Y., Kim, D. H., Won, M. S., Hong, S. M. and Song, T. J.(2021b), "A study on the classification and understanding of travel boundary by city population scale based on mobile travel data", Journal of Korean Society of Transportation, vol. 39, no. 5, pp.662-680. https://doi.org/10.7470/jkst.2021.39.5.662
- Lee, G. J. and Choe, G. J.(2010), "A bike mode share estimation model and analysis of the bike demand factor effects", Journal of Korean Society of Transportation, vol. 28, no. 3, pp.145-155.
- Phithakkitnukoon, S., Sukhvibul, T., Demissie, M., Smoreda, Z., Natwichai, J. and Bento, C.(2017), "Inferring social influence in transport mode choice using mobile phone data", EPJ Data Science, vol. 6, pp.1-29. https://doi.org/10.1140/epjds/s13688-016-0097-x
- Qu, Y., Gong, H. and Wang, P.(2015), "Transportation mode split with mobile phone data", In 2015 IEEE 18th international conference on intelligent transportation systems, IEEE, September, pp.285-289.
- Ryu, S. K., Rho, J. H. and Kim, J. E.(2012), "A study on the modal split model using zonal data", Journal of Korean Society of Transportation, vol. 30, no. 1, pp.113-123. https://doi.org/10.7470/jkst.2012.30.1.113
- Sadeghvaziri, E., Rojas IV, M. B. and Jin, X.(2016), "Exploring the potential of mobile phone data in travel pattern analysis", Transportation Research Record, vol. 2594, no. 1, pp.27-34. https://doi.org/10.3141/2594-04
- Shin, K.(2014), "Improving methods for estimating transportation mode choice model in Busan-Ulsan metropolitan area", Journal of the Korea Academia-Industrial cooperation Society, vol. 15, no. 7, pp.4580-4587. https://doi.org/10.5762/KAIS.2014.15.7.4580
- Toole, J. L., Ulm, M., Gonzalez, M. C. and Bauer, D.(2012), "Inferring land use from mobile phone activity", In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, August, pp.1-8.
- Wang, H., Calabrese, F., Di Lorenzo, G. and Ratti, C.(2010), "Transportation mode inference from anonymized and aggregated mobile phone call detail records", In 13th International IEEE Conference on Intelligent Transportation Systems, IEEE, September, pp.318-323.
- Won, M., Choi, J., Lee, H. and Kim, J.(2021), "Development of an algorithm to analyze home-based work trips using mobile phone data", Journal of Korean Society of Transportation, vol. 39, no. 3, pp.383-398. https://doi.org/10.7470/jkst.2021.39.3.383
- Xu, D., Song, G., Gao, P., Cao, R., Nie, X. and Xie, K.(2011), "Transportation modes identification from mobile phone data using probabilistic models", In International Conference on Advanced Data Mining and Applications, Springer, Berlin, Heidelberg, December, pp.359-371.