DOI QR코드

DOI QR Code

A Study on Selection of Bicycle Road Hazard Detection Elements For Mobile IoT Sensor Device Operation

이동형 IoT 센서 장비 운용을 위한 자전거도로 위험 감지요소 선정 연구

  • Woochul Choi (Dept. of Future & Smart Construction Research, KICT) ;
  • Bong-Joo Jang (Dept. of Future & Smart Construction Research, KICT) ;
  • Sun-Kyum Kim (Dept. of Future & Smart Construction Research, KICT) ;
  • Intaek Jung (Dept. of Future & Smart Construction Research, KICT)
  • 최우철 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 장봉주 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 김선겸 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 정인택 (한국건설기술연구원 미래스마트건설연구본부)
  • Received : 2024.07.11
  • Accepted : 2024.08.13
  • Published : 2024.08.31

Abstract

This study selected bicycle road hazard detection factors for mobile IoT sensor device operation and developed service application plans. Twelve bicycle road hazard detection factors were derived through a focused group interview, and a fuzzy AHP-based importance analysis was conducted on 30 road and transportation experts. As a result, 'damage to pavement' (1st overall) and 'environmental obstacle' (2nd) with low visibility but a high risk of accidents were selected the most. The factors in terms of facility management, such as 'disconnected route occurrence' (4th), 'artificial obstacle' (5th), 'effective width' (6th), and 'poor drainage' (7th), were selected as the upper and middle areas. Factors that are not direct accident-inducing factors, such as 'loss of road markings' (11th) and 'free space width' (12th), were selected the least. Based on this, a plan was presented to apply the bicycle road hazard detection service and a service operation strategy according to real-time performance. Nevertheless, follow-up studies, such as human behavioral analysis based on bicycle operators, analysis according to the bicycle road type, service demonstration, and pilot operation, will be needed to develop safe bicycle road management is expected.

본 연구는 자전거도로에서의 사고 예방 및 위험요소 관리를 위해 이동형 IoT 센서 장비 운용을 위한 자전거도로 위험 감지요소 선정 및 서비스 적용방안을 제시하였다. 전문가 심층조사를 통해 12개의 자전거도로 위험 감지요소를 도출하였고, 도로·교통 전문가 30명을 대상으로 Fuzzy AHP 기반의 중요도 분석을 수행하였다. 그 결과, 시인성이 낮으나 사고 위험성이 높은 포장상태 손상(전체 1순위), 환경적 장애요소(2순위)가 최상위권에 선정되었다. 중상위권으로는 단절노선 발생(4순위), 인공적 장애요소(5순위), 유효 폭(6순위), 배수 불량(7순위) 등 시설관리 요소들이 선정되었다. 노면표시 손실(11순위), 여유공간 폭(12순위)과 같이 직접적인 사고유발 요인이 아닌 요소들은 최하위권에 선정되었다. 이를 토대로 자전거도로 위험 감지 서비스 적용방안 및 실시간성에 따른 서비스 운영전략을 함께 제시하였다. 향후 자전거도로 유형별 분석, 서비스 실증 및 시범운영 등 후속연구가 활발히 진행되어, 국민들이 안전하게 이용할 수 있는 자전거도로 운영 및 관리가 이루어지길 기대한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다 (20240143-001, 미래 건설산업 견인 및 신시장 창출을 위한 스마트 건설기술 연구).

References

  1. Chae, C., Sim, H. and Lee, J.(2018), "Integration and decision algorithm for location-based road hazardous data collected by probe vehicles", The Journal of The Korea Institute of Intelligent Transportation Systems, vol. 17, no. 6, pp.173-184. https://doi.org/10.12815/kits.2018.17.6.173
  2. Hwang, J. S., Lee, J. S. and Lee, J. H.(2023), "A study on the development of road surface map based on high definition maps for managing road conditions", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartograph, vol. 41, no. 6, pp.661-667. https://doi.org/10.7848/ksgpc.2023.41.6.661
  3. Joo, S. and Oh, C.(2013), "A novel method to monitor bicycling environments", Transportation Research Part A: Policy and Practice, vol. 54, pp.1-13. https://doi.org/10.1016/j.tra.2013.07.001
  4. Joo, S., Oh, C., Jeong, E. and Lee, G.(2015), "Categorizing bicycling environments using GPS-based public bicycle speed data", Transportation Research Part C: Emerging Technologies, vol. 56, pp.239-250. https://doi.org/10.1016/j.trc.2015.04.012
  5. KICT(Korea Institute of Civil Engineering and Building Technology)(2023), Research on smart construction technology for leading the future construction industry and creating new market, pp.127-131.
  6. Kim, C. B., Hong, W. H., Jo, Y. B. and Kim, J. D.(2013), "Extraction of evaluation criteria on technology and service related to smart grid and analysis of relative importance among evaluation criteria by AHP method", Korea Environmental Policy And Administration Society, vol. 21, no. 3, pp.127-144. https://doi.org/10.15301/jepa.2013.09.21.3.127
  7. Kim, J. E., Nam, S. and Lee, Z. K.(2023), "Selecting optimal locations for bicycle lanes to prevent accidents in Seoul", The Korea Journal of BigData, vol. 8, no. 2, pp.45-54. https://doi.org/10.36498/KBIGDT.2023.8.2.45
  8. Kim, K., Jo, S. H., An, J. H. and Kim, N.(2016), "A study on the evaluation criteria of pavement condition using investigation equipment of bicycle road", Journal of the Korean Society of Civil Engineers, vol. 36, no. 6, pp.1125-1131. https://doi.org/10.12652/KSCE.2016.36.6.1125
  9. Kim, S. S. and Morita, Y.(2017), "A study for a lane surface design to prevent negligent accident on the bicycle lane", Journal of the Korea Entertainment Industry Association, vol. 11, no. 3, pp.313-325. https://doi.org/10.21184/jkeia.2017.04.11.3.313
  10. KOSIS(Korean Statistical Information Service), https://kosis.kr, 2024.05.03.
  11. KOTI(Korea Transport Institute), https://www.koti.re.kr, 2024.05.03.
  12. Laarhoven, P. and Pedrycz, W.(1983), "A fuzzy extension of Saaty's priority theory, Fuzzy Sets and Systems", Fuzzy Sets and Systems, vol. 11, no. 3, pp.229-241. https://doi.org/10.1016/S0165-0114(83)80082-7
  13. Lee, H. N.(2022), "Analyzing the present situation of bike lanes from a public design perspective: Focused on Seoul, Korea", Journal of The Urban Design Institute of Korea, vol. 23, no. 6, pp.53-66. https://doi.org/10.38195/judik.2022.12.23.6.53
  14. Lee, J. M. and Kim, S. J.(2023), "Bicycle road analysis using clustering based on deep learning", Journal of Korean Institute of Information Technology, vol. 21, no. 1, pp.131-138. https://doi.org/10.14801/jkiit.2023.21.1.131
  15. Lee, M., Kim, Y., Jun, Y. and Shin, Y.(2019), "Random forest based prediction of road surface condition using Spatio-temporal feature", Journal of Korean Society of Transportation, vol. 37, no. 4, pp.338-349. https://doi.org/10.7470/jkst.2019.37.4.338
  16. Lee, S., Mogi, G. and Kim, J.(2009), "Decision support for prioritizing energy technologies against high oil prices: A fuzzy analytic hierarchy process approach", Journal of Loss Prevention in the Process Industries, vol. 22, no. 6, pp.915-920. https://doi.org/10.1016/j.jlp.2009.07.001
  17. Park, S. W. and Lee, W. J.(2019), "Improvement of management of long-term care facilities through FGI", The Journal of the Korea Contents Association, vol. 19, no. 1, pp.587-597. https://doi.org/10.5392/JKCA.2019.19.01.587
  18. Saaty, T.(1986), "Absolute and relative measurement with the AHP. The most livable cities in the United States", Socio-Economic Planning Sciences, vol. 20, no. 6, pp.327-331. https://doi.org/10.1016/0038-0121(86)90043-1
  19. Schepers, P. and Wolt, K. K.(2012), "Single-bicycle crash types and characteristics", Cycling Research International, vol. 2, pp.119-135.
  20. Shim, S. and Jeong, J. J.(2021), "Detection algorithm of road damage and obstacle based on joint deep learning for driving safety", The Journal of The Korea Institute of Intelligent Transportation Systems, vol. 20, no. 2, pp.95-111. https://doi.org/10.12815/kits.2021.20.2.95
  21. Zadeh, L.(1965), "Fuzzy sets", Information and Control, vol. 8, no. 3, pp.338-353. https://doi.org/10.1016/S0019-9958(65)90241-X