DOI QR코드

DOI QR Code

A Genotoxicity Study of Transgenic Tomatoes using CRISPR/Cas9

CRISPR/Cas9에 의한 유전자교정 토마토의 유전독성평가

  • Dong-Min Kang (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Woo-Jin Jeong (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Bashu Dev Neupane (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Yu Jin Jung (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Jong Mi Kim (Korea Public Management Institute) ;
  • Kwon Kyoo Kang (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Mi-Jeong Ahn (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
  • 강동민 (경상국립대학교 약학대학 약학과) ;
  • 정우진 (경상국립대학교 약학대학 약학과) ;
  • 바슈 데브 네우파네 (경상국립대학교 약학대학 약학과) ;
  • 정유진 (한경대학교 생명공학부 원예생명공학전공) ;
  • 김종미 (한국공공관리연구원) ;
  • 강권규 (한경대학교 생명공학부 원예생명공학전공) ;
  • 안미정 (경상국립대학교 약학대학 약학과)
  • Received : 2024.06.03
  • Accepted : 2024.06.24
  • Published : 2024.08.30

Abstract

Tomato is a widely distributed, cultivated, and commercialized vegetable crop. Recently, an increasing trend has been observed in the consumption of transgenic crops with enhanced functional components. However, consumer concerns regarding genotoxicity have been increasing. This study examined the genotoxicity of transgenic tomato (LTT) using the CRISPR/Cas9 system through a bacterial reverse mutation assay, chromosomal aberration assay, and mammalian micronucleus test. In the bacterial reverse mutation assay, LTT did not induce mutagenicity in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, or Escherichia coli WP2uvrA, irrespective of the presence or absence of S9. LTT did not cause clastogenic or aneugenic chromosomal abnormalities during metaphase in CHL cells. Moreover, LTT did not increase the frequency of micronucleated polychromatic erythrocytes in the polychromatic erythrocytes. These findings can be used as a foundation to assess the genotoxicity of transgenic crops using the CRISPR/Cas9 system in the future.

최근 전세계적으로 기능성 성분이 강화된 유전자교정 작물의 생산 및 소비가 증가하고 있다. 하지만 유전자교정작물의 유전독성에 관한 소비자의 우려도 증가하고 있어 과학적인 자료 확보 및 정보 공유에 대한 인프라가 필요한 실정이다. 본 연구에서는 CRISPR/Cas9 시스템을 활용한 유전자교정 토마토 동결건조물(LTT)이 DNA나 염색체에 직접적인 손상을 일으키고 형태적 또는 기능적 이상을 유발하는지 여부를 확인하기 위해 유전독성 평가를 수행하였다. 이를 위하여 미생물 복귀돌연변이시험, 염색체이상시험, 골수세포를 이용한 체내 소핵시험을 국제적으로 표준화된 OECD Guidelines에 따라 시험을 진행하였다. 복귀돌연변이 시험에서 LTT는 S9의 존재 여부와 관계없이 Salmonella typhimurium 균주 TA98, TA100, TA1535 및 TA1537, 그리고 Escherichia coli WP2 uvrA에서 복귀돌연변이를 유발하지 않았다. LTT는 CHL 세포의 수적이상 중기상과 구조적이상 중기상 등의 염색체 이상을 유발하지 않았다. 또한, LTT는 다염성 적혈구에서 소핵화된 다염성 적혈구의 빈도를 증가시키지 않았다. 이러한 연구를 통해 CRISPR/Cas9 시스템을 활용한 유전자교정 토마토의 안전성을 검증하고, 향후 CRISPR/Cas9 시스템을 활용한 유전자교정 작물의 유전독성을 평가하는 기초 자료로 사용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2021R1I1A4A0105729511)의 지원을 받아 수행하였으며, 유전독성시험 분석은 비임상시험수탁전문기관(CRO)인 코아스템켐온(주)의 도움을 받아 진행되었습니다. 이에 감사드립니다.

References

  1. Bhowmik, D., Kumar, K.P.S., Paswan, S., Srivastava, S., Tomatoa natural medicine and its health benefits. J. Pharmacogn. Phytochem., 1, 33-43 (2012).
  2. Borguini, R.G., Ferraz Da Silva Torres, E.A., Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int., 25, 313-325 (2009).
  3. Toor, R.K., Savage, G.P., Antioxidant activity in different fractions of tomatoes. Food Res. Int., 38, 487-494 (2005).
  4. Rivero, A.G., Keutgen, A.J., Pawelzik, E., Antioxidant properties of tomato fruit (Lycopersicon esculentum Mill.) as affected by cultivar and processing method. Horticulturae, 8, 547 (2022).
  5. Fraser, P.D., Truesdale, M.R., Bird, C.R., Schuch, W., Bramley, P.M., Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol., 105, 405-413 (1994).
  6. Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., Luo, Y., Zhu, H., Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci., 9, 559 (2018).
  7. Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B., Giuliano, G., Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J., 24, 413-419 (2000).
  8. Galpaz, N., Wang, Q., Menda, N., Zamir, D., Hirschberg, J., Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J., 53, 717-730 (2008).
  9. Wu, X., Jia, Q., Ji, S., Gong, B., Li, J., Lu, G., Gao, H., Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biol., 20, 465 (2020).
  10. Nonaka, S., Arai, C., Takayama, M., Matsukura, C., Ezura, H., Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep., 7, 7057 (2017).
  11. Lino, C.A., Harper, J.C., Carney, J.P., Timlin, J.A., Delivering CRISPR: a review of the challenges and approaches. Drug Deliv., 25, 1234-1257 (2018).
  12. Liu, Q., Yang, F., Zhang, J., Liu, H., Rahman, S., Islam, S., Ma, W., She, M., Application of CRISPR/Cas9 in crop quality improvement. Int. J. Mol. Sci., 22, 4206 (2021).
  13. Lusser, M., Parisi, C., Plan, D., Rodriguez-Cerezo, E., Deployment of new biotechnologies in plant breeding. Nat. Biotechnol., 30, 231-239 (2012).
  14. Gaj, T., Gersbach, C.A., Barbas, C.F. III., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397-405 (2013).
  15. Ricroch, A., Clairand, P., Harwood, W., Use of CRISPR systems in plant genome editing: Toward new opportunities in agriculture. Emerg. Top. Life Sci., 1, 169-182 (2017).
  16. Waltz, E., GABA-enriched tomato is first CRISPR-edited food to enter market. Nat. Biotechnol., 40, 9-11 (2022).
  17. Combs, R., Bilyeu, K., Novel alleles of FAD2-1A induce high levels of oleic acid in soybean oil. Mol. Breeding, 39, 79 (2019).
  18. Kim, J.Y., Kim, J.H., Jang, Y.H., Yu, J., Bae, S., Kim, M.S., Cho, Y.G., Jung, Y.J., Kang, K.K., Transcriptome and metabolite profiling of tomato SGR-knockout null lines using the CRISPR/Cas9 system. Int. J. Mol. Sci., 24, 109 (2023).
  19. Kim, J.M., Park, H.R., Plan for establishing cooperative governance of biotechnology policy-focusing on enhancing social acceptance of gene editing technology. Korean Public Manag. Rev., 37, 145-167 (2023).
  20. Kang, D.M., Kwon, J.M., Jeong, W.J., Jung, Y.J., Kang, K.K., Ahn, M.J., Antioxidant constituents and activities of the pulp with skin of Korean tomato cultivars. Molecules, 27, 8741 (2022).
  21. Kim, H.J., Park, W.S., Bae, J.Y., Kang, S.Y., Yang, M.H., Lee, S., Lee, H.S., Kwak, S.S., Ahn, M.J., Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. J. Food Compost. Anal., 41, 188-193 (2015).
  22. Tilahun, S., Choi, H.R., Baek, M.W., Cheol, L.H., Kwak, K.W., Park, D.S., Solomon, T., Jeong, C.S., Antioxidant properties, γ-aminobutyric acid (GABA) content, and physicochemical characteristics of tomato cultivars. Agronomy, 11, 1204 (2021).
  23. Organisation for Economic Cooperation and Development (OECD), 2020. Test No. 471: bacterial reverse mutation test, OECD Publishing, Paris, France, pp. 1-11.
  24. Maron, D.M., Ames, B.N., Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215 (1983).
  25. Organisation for Economic Cooperation and Development (OECD), 2016. Test No. 473: In Vitro mammalian chromosomal aberration test, OECD Publishing, Paris, France, pp. 1-22.
  26. Japanese Environmental Mutagen Society- Mammalian Mutagenicity Study Group (JEMS-MMS), 1988. Atlas of chromosome aberration by chemicals, Tokyo, Japan.
  27. Organisation for Economic Cooperation and Development (OECD), 2016. Test No. 474: mammalian erythrocyte micronucleus test, OECD Publishing, Paris, France, pp. 1-21.
  28. Stroda, K.A., Murphy, J.D., Hansen, R.J., Brownlee, L., Atencio, E.A., Gustafson, D.L., Lana, S.E., Pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide in cats after oral, intravenous, and intraperitoneal administration of cyclophosphamide. Am. J. Vet. Res, 78, 862-866 (2017).
  29. Schmid, W., The micronucleus test. Mutat. Res., 31, 9-15 (1975).
  30. Hayashi, M., Sofuni, T., Ishidate, M.Jr., An application of acridine orange fluorescent staining to the micronucleus test. Mutat. Res., 120, 241-247 (1983).
  31. Ku, J., Hwang, J.H., Genotoxicity evaluation using reversion mutation test of SU-Eohyeol pharmacopuncture. J. Physiol. Pathol. Korean Med., 36, 113-119 (2022).
  32. Kim, H.B., Park, H.U, Lee, J.Y., Kwon, H.J., Lack of Mutagenecity of green pigments in Salmonella typhimurium. J. Food Hyg. Safety, 26, 242-247 (2011).
  33. Yun, J.H., Park, I.J., Park, S.H., Choi, G.H., Kim, H.J., Cho, J.H., Genotoxicity study of Litsea japonica fruit flesh extract. J. Food Hyg. Saf., 33, 207-213 (2018).
  34. Hong, S.G., Chung, S.G., Hyun, S.H., The micronucleus test of the diglyceride preparation with conjugated linoleic acid by using mice. J. Korea Soc. Food Sci. Nutr., 37, 853-857 (2008).
  35. Scolastici, C., Alves de Lima, R.O., Barbisan, L.F., Ferreira, A.L., Ribeiro, D.A., Salvadori, D.M., Antigenotoxicity and antimutagenicity of lycopene in HepG2 cell line evaluated by the comet assay and micronucleus test. Toxicol In Vitro, 22, 510-514 (2008).
  36. Nicolia, A., Manzo, A., Veronesi, F., Rosellini, D., An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 34, 77-88 (2014).