DOI QR코드

DOI QR Code

Flight Dynamics Mathematical Modeling of Quad Tilt Rotor UAM for Real-Time Simulation

쿼드 틸트 로터 UAM 실시간 비행 시뮬레이션을 위한 비행역학 수학적 모델링

  • Received : 2024.04.05
  • Accepted : 2024.07.11
  • Published : 2024.08.31

Abstract

This paper describes the results of a study on Generic Quad Tilt Rotor UAM aircraft, focusing on nonlinear mathematical modeling and the development of real-time simulation software. In this research, we designed a configuration for a Generic Quad Tilt Rotor eVTOL UAM aircraft based on NASA's UAM mission requirements. We modeled the aerodynamics using a database, the prop-rotor dynamics with a thrust database, and included a ground reaction and atmospheric model in the flight model. We defined the control concept for various modes(helicopter mode, transition mode, and airplane mode), derived tilt angle corridors, and formulated flight control requirements. The resultant real-time flight simulation software not only performs trim analysis for Tilt Rotor UAM aircraft but also predicts handling qualities, optimizes tilt angle scheduling based on dynamic characteristics, designs and validates flight control laws for helicopter, transition, and airplane modes, and facilitates flight training through simulator integration.

본 논문은 Generic 쿼드 틸트 로터 UAM 항공기 비행 동력학 기반 비선형 수학적 모델링 및 실시간 시뮬레이션 소프트웨어 개발에 관한 연구 결과를 기술한다. 본 연구에서는 NASA의 UAM 임무 형상 및 요구도를 참고하여 Generic 쿼트 틸트 로터 eVTOL UAM 항공기 형상을 설계하고, 공력 데이터베이스 기반 공기역학, 추력 데이터베이스 기반 프롭로터역학, 항공기의 지면반력, 대기환경을 운동모델로 모델링하였다. 또한 회전익 모드, 천이 모드 및 고정익 모드 별 조종방법을 정의, 나셀 틸트각 Corridor 설정 후 실시간 비행 시뮬레이션 소프트웨어에 구현 후 수평비행 트림 해석을 수행하였다. 본 실시간 비행 시뮬레이션 소프트웨어를 통해 쿼드 틸트 로터 UAM 항공기의 트림 해석뿐 아니라 조종성(Handling Qualities) 예측, 동특성을 고려한 나셀 틸트각 스케줄러 최적화와 회전익, 고정익 및 천이 모드 별 비행 제어법칙 설계/검증 및 비행 시뮬레이터 탑재를 통한 비행 훈련 등 쿼트 틸트 로터 UAM 분야에서 다양한 목적으로 활용 가능할 것으로 예상한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 RS-2022-00143965)

References

  1. A. Karem, and W. M. Waide, "eVTOL Aircraft using large variable speed tilt rotors," Karem Aircraft, Inc., US Patent Pub. No.US10351235 B2.
  2. F. D. Harris, Tiltrotor Conceptual Design, Technical Report NASA/CR-2017-219474, Ames Research Center, National Aeronautics and Space Administration, USA, 2017.
  3. S. W. Ferguson, A mathematical model for real time flight simulation of a generic tilt-rotor aircraft, NAS A Contractor Report CR-166536, National Aeronautics and Space Administration, USA, 1988.
  4. G. Ferrarese, F. Giulietti and G. Avanzini, "Modeling and simulation of a quad-tilt rotor aircraft," IFAC Proceedings, Vol. 46 No. 30, pp. 64-70, 2013. https://doi.org/10.3182/20131120-3-FR-4045.00037
  5. S. W. Ferguson, Development And Validation Of A Simulation For A Generic Tilt-Rotor Aircraft, NASA Contract Report CR-166537, Ames Research Center, National Aeronautics and Space Administration, USA, 1989.
  6. U. Saetti, and B. Batin, "Tiltrotor Simulations with Coupled Flight Dynamics, State-Space Aeromechanics, and Aeroacoustics," Journal of the American Helicopter Society, Vol. 69, No. 1, pp. 1~18, 2024. https://doi.org/10.4050/JAHS.69.012003
  7. O. Juhasz, R. Celi, and M. B. Tischler. "Flight dynamics simulation modeling of a large flexible tiltrotor aircraft," Journal of the American Helicopter Society, Vol. 67, No. 2, pp. 1-16, 2022. https://doi.org/10.4050/JAHS.67.022003
  8. M. Miller, and J. Narkiewicz. "Tiltrotor modelling for simulation in various flight conditions," Journal of theoretical and applied mechanics, Vol. 44, No. 4 pp. 881-906, 2006.
  9. B. W. McCormick, Aerodynamics of V/STOL flight, Courier Corporation, Dover Pubns., USA, 1999.
  10. M. J. Silva, "The Role of Modeling & Simulation in the Mitigation of V-22 Tiltrotor Formation Flight Wake-Induced Roll-off," 72nd Annual Forum of the American Helicopter Society, 2016.
  11. N. S. Currey, Aircraft Landing Gear Design: Principles and Practices, AIAA, USA, 1988.
  12. B. Davoudi, E. Taheri, K. Duraisamy, B. Jayaraman, and I. Kolmanovsky, "Quad-rotor flight simulation in realistic atmospheric conditions," AIAA Journal, Vol. 58, No. 5, pp. 1992~2004, 2020. https://doi.org/10.2514/1.J058327
  13. R. T. Rysdyk, and A. J. Calise, "Adaptive model inversion flight control for tilt-rotor aircraft." Journal of guidance, control, and dynamics, Vol. 22, No. 3, pp. 402~407, 1999. https://doi.org/10.2514/2.4411
  14. T. Lombaerts, J. Kaneshige, and M. Feary, "Control concepts for simplified vehicle operations of a quadrotor eVTOL vehicle," AIAA Aviation Conference, Virtual Event, 2020.
  15. M. D. Maisel, The history of the XV-15 tilt rotor research aircraft: from concept to flight, NASA Ames Research Center, National Aeronautics and Space Administration, USA, 2000.
  16. J. S. G. McVicar, and R. Bradley, "Efficient and robust algorithms for trim and stability analysis of advanced rotorcraft simulations," The Aeronautical Journal, Vol. 101, No. 1008, pp. 375~387, 1997. https://doi.org/10.1017/S0001924000066082
  17. C. S. Yoo, H. S. Choi, B. J. Park, S. J. Ahn and Y. S. Kang, "Development of simulation program for tilt rotor aircraft," Journal of Institute of Control, Robotics and Systems, Vol. 11, No. 3, pp. 193-199, 2005. https://doi.org/10.5302/J.ICROS.2005.11.3.193