References
- Adachi, Y., Ohno, N., Ohsawa, M., Oikawa, S. and Yadomae, T. (1990) Change of biological activities of (1----3)-beta-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chem. Pharm. Bull. (Tokyo) 38, 477-481. https://doi.org/10.1248/cpb.38.477
- Albeituni, S. H., Ding, C., Liu, M., Hu, X., Luo, F., Kloecker, G., Bousamra, M., 2nd, Zhang, H. G. and Yan, J. (2016) Correction: yeast-derived particulate beta-glucan treatment subverts the suppression of myeloid-derived suppressor cells (mdsc) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J. Immunol. 196, 3967.
- Alloatti, A., Kotsias, F., Pauwels, A. M., Carpier, J. M., Jouve, M., Timmerman, E., Pace, L., Vargas, P., Maurin, M., Gehrmann, U., Joannas, L., Vivar, O. I., Lennon-Dumenil, A. M., Savina, A., Gevaert, K., Beyaert, R., Hoffmann, E. and Amigorena, S. (2015) Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 43, 1087-1100. https://doi.org/10.1016/j.immuni.2015.11.006
- Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T. and Zare, P. (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59.
- Bayat Mokhtari, R., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B. and Yeger, H. (2017) Combination therapy in combating cancer. Oncotarget 8, 38022-38043. https://doi.org/10.18632/oncotarget.16723
- Berraondo, P., Sanmamed, M. F., Ochoa, M. C., Etxeberria, I., Aznar, M. A., Perez-Gracia, J. L., Rodriguez-Ruiz, M. E., Ponz-Sarvise, M., Castanon, E. and Melero, I. (2019) Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6-15. https://doi.org/10.1038/s41416-018-0328-y
- Brown, G. D. and Gordon, S. (2003) Fungal beta-glucans and mammalian immunity. Immunity 19, 311-315. https://doi.org/10.1016/S1074-7613(03)00233-4
- Camilli, G., Tabouret, G. and Quintin, J. (2018) The complexity of fungal beta-glucan in health and disease: effects on the mononuclear phagocyte system. Front. Immunol. 9, 673.
- De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G. R., Leclercq, G., Allais, L., Pilette, C., Dierendonck, M., De Geest, B. G. and Cuvelier, C. A. (2013) beta-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release 172, 671-678. https://doi.org/10.1016/j.jconrel.2013.09.007
- Ding, C., Shrestha, R., Zhu, X., Geller, A. E., Wu, S., Woeste, M. R., Li, W., Wang, H., Yuan, F., Xu, R., Chariker, J. H., Hu, X., Li, H., Tieri, D., Zhang, H. G., Rouchka, E. C., Mitchell, R., Siskind, L. J., Zhang, X., Xu, X. G., McMasters, K. M., Yu, Y. and Yan, J. (2023) Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat. Immunol. 24, 239-254.
- Drummond, R. A. and Brown, G. D. (2011) The role of Dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 14, 392-399. https://doi.org/10.1016/j.mib.2011.07.001
- DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356. https://doi.org/10.1021/ac60111a017
- Fu, J., Kanne, D. B., Leong, M., Glickman, L. H., McWhirter, S. M., Lemmens, E., Mechette, K., Leong, J. J., Lauer, P., Liu, W., Sivick, K. E., Zeng, Q., Soares, K. C., Zheng, L., Portnoy, D. A., Woodward, J. J., Pardoll, D. M., Dubensky, T. W., Jr. and Kim, Y. (2015) STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra252.
- Goodridge, H. S., Wolf, A. J. and Underhill, D. M. (2009) Beta-glucan recognition by the innate immune system. Immunol. Rev. 230, 38-50. https://doi.org/10.1111/j.1600-065X.2009.00793.x
- Han, B., Baruah, K., Cox, E., Vanrompay, D. and Bossier, P. (2020) Structure-functional activity relationship of beta-glucans from the perspective of immunomodulation: a mini-review. Front. Immunol. 11, 658.
- Hong, F., Yan, J., Baran, J. T., Allendorf, D. J., Hansen, R. D., Ostroff, G. R., Xing, P. X., Cheung, N. K. and Ross, G. D. (2004) Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173, 797-806. https://doi.org/10.4049/jimmunol.173.2.797
- Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. (2010) Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. mBio 1, e00164-10.
- Huang, L., Xu, H. and Peng, G. (2018) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell. Mol. Immunol. 15, 428-437. https://doi.org/10.1038/cmi.2018.4
- Ikewaki, N., Dedeepiya, V. D., Raghavan, K., Rao, K. S., Vaddi, S., Osawa, H., Kisaka, T., Kurosawa, G., Srinivasan, S., Kumar, S. R. B., Senthilkumar, R., Iwasaki, M., Preethy, S. and Abraham, S. J. K. (2022) beta-glucan vaccine adjuvant approach for cancer treatment through immune enhancement (B-VACCIEN) in specific immunocompromised populations (review). Oncol. Rep. 47, 14.
- Kawai, T. and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384. https://doi.org/10.1038/ni.1863
- Khurana, S., Chearwae, W., Castellino, F., Manischewitz, J., King, L. R., Honorkiewicz, A., Rock, M. T., Edwards, K. M., Del Giudice, G., Rappuoli, R. and Golding, H. (2010) Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci. Transl. Med. 2, 15ra15.
- Kim, H. J. and White, P. J. (2013) Impact of the molecular weight, viscosity, and solubility of beta-glucan on in vitro oat starch digestibility. J. Agric. Food Chem. 61, 3270-3277. https://doi.org/10.1021/jf305348j
- Lao, Y., Shen, D., Zhang, W., He, R. and Jiang, M. (2022) Immune checkpoint inhibitors in cancer therapy-how to overcome drug resistance? Cancers (Basel) 14, 3575.
- Lee, C., Verma, R., Byun, S., Jeun, E. J., Kim, G. C., Lee, S., Kang, H. J., Kim, C. J., Sharma, G., Lahiri, A., Paul, S., Kim, K. S., Hwang, D. S., Iwakura, Y., Speciale, I., Molinaro, A., De Castro, C., Rudra, D. and Im, S. H. (2021) Structural specificities of cell surface beta-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nat. Commun. 12, 3611.
- Lee, J. J., Shim, A., Lee, S. Y., Kwon, B. E., Kim, S. R., Ko, H. J. and Cho, H. J. (2016) Ready-to-use colloidal adjuvant systems for intranasal immunization. J. Colloid Interface Sci. 467, 121-128. https://doi.org/10.1016/j.jcis.2016.01.006
- Lei, N., Wang, M., Zhang, L., Xiao, S., Fei, C., Wang, X., Zhang, K., Zheng, W., Wang, C., Yang, R. and Xue, F. (2015) Effects of low molecular weight yeast beta-glucan on antioxidant and immunological activities in mice. Int. J. Mol. Sci. 16, 21575-21590. https://doi.org/10.3390/ijms160921575
- Li, P., Tan, H., Xu, D., Yin, F., Cheng, Y., Zhang, X., Liu, Y. and Wang, F. (2014) Effect and mechanisms of curdlan sulfate on inhibiting HBV infection and acting as an HB vaccine adjuvant. Carbohydr. Polym. 110, 446-455. https://doi.org/10.1016/j.carbpol.2014.04.025
- Lin, M. J., Svensson-Arvelund, J., Lubitz, G. S., Marabelle, A., Melero, I., Brown, B. D. and Brody, J. D. (2022) Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911-926. https://doi.org/10.1038/s43018-022-00418-6
- Luchner, M., Reinke, S. and Milicic, A. (2021) TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics 13, 142.
- Marques, H. S., de Brito, B. B., da Silva, F. A. F., Santos, M. L. C., de Souza, J. C. B., Correia, T. M. L., Lopes, L. W., Neres, N. S. M., Dorea, R., Dantas, A. C. S., Morbeck, L. L. B., Lima, I. S., de Almeida, A. A., Dias, M. R. J. and de Melo, F. F. (2021) Relationship between Th17 immune response and cancer. World J. Clin. Oncol. 12, 845-867. https://doi.org/10.5306/wjco.v12.i10.845
- Moorlag, S., Khan, N., Novakovic, B., Kaufmann, E., Jansen, T., van Crevel, R., Divangahi, M. and Netea, M. G. (2020) beta-Glucan induces protective trained immunity against mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep. 31, 107634.
- Pirow, R., Blume, A., Hellwig, N., Herzler, M., Huhse, B., Hutzler, C., Pfaff, K., Thierse, H. J., Tralau, T., Vieth, B. and Luch, A. (2019) Mineral oil in food, cosmetic products, and in products regulated by other legislations. Crit. Rev. Toxicol. 49, 742-789. https://doi.org/10.1080/10408444.2019.1694862
- Pulendran, B., S Arunachalam, P. and O'Hagan, D. T. (2021) Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454-475. https://doi.org/10.1038/s41573-021-00163-y
- Reed, S. G., Orr, M. T. and Fox, C. B. (2013) Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597-1608. https://doi.org/10.1038/nm.3409
- Saijo, S. and Iwakura, Y. (2011) Dectin-1 and Dectin-2 in innate immunity against fungi. Int. Immunol. 23, 467-472. https://doi.org/10.1093/intimm/dxr046
- Schirrmacher, V. (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int. J. Oncol. 54, 407-419. https://doi.org/10.3892/ijo.2018.4661
- Schoenfeld, A. J. and Hellmann, M. D. (2020) Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443-455. https://doi.org/10.1016/j.ccell.2020.03.017
- Shimizu, K., Iyoda, T., Okada, M., Yamasaki, S. and Fujii, S. I. (2018) Immune suppression and reversal of the suppressive tumor microenvironment. Int. Immunol. 30, 445-454. https://doi.org/10.1093/intimm/dxy042
- Shui, Y., Hu, X., Hirano, H., Kusano, K., Tsukamoto, H., Li, M., Hasumi, K., Guo, W. Z. and Li, X. K. (2021) beta-Glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int. Immunopharmacol. 101, 108265.
- Suzuki, T., Kusano, K., Kondo, N., Nishikawa, K., Kuge, T. and Ohno, N. (2021) Biological activity of high-purity beta-1,3-1,6-glucan derived from the black yeast aureobasidium pullulans: a literature review. Nutrients 13, 242.
- Tan, S., Li, D. and Zhu, X. (2020) Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821.
- Toor, S. M., Sasidharan Nair, V., Decock, J. and Elkord, E. (2020) Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 65, 1-12. https://doi.org/10.1016/j.semcancer.2019.06.021
- Umansky, V., Blattner, C., Gebhardt, C. and Utikal, J. (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4, 36.
- Veglia, F., Sanseviero, E. and Gabrilovich, D. I. (2021) Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485-498. https://doi.org/10.1038/s41577-020-00490-y
- Vetvicka, V. and Vetvickova, J. (2015) Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann. Transl. Med. 3, 22.
- Wagner, J., Wickman, E., DeRenzo, C. and Gottschalk, S. (2020) CAR T cell therapy for solid tumors: bright future or dark reality? Mol. Ther. 28, 2320-2339. https://doi.org/10.1016/j.ymthe.2020.09.015
- Yi, E. J., Kim, Y. I., Song, J. H., Ko, H. J. and Chang, S. Y. (2023) Intranasal immunization with curdlan induce Th17 responses and enhance protection against enterovirus 71. Vaccine 41, 2243-2252. https://doi.org/10.1016/j.vaccine.2023.01.074