DOI QR코드

DOI QR Code

Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy

  • Jae-Hyeon Jeong (Department of Pharmacy, Kangwon National University) ;
  • Dae-Joon Kim (Department of Pharmacy, Kangwon National University) ;
  • Seong-Jin Hong (Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Jae-Hee Ahn (Department of Pharmacy, Kangwon National University) ;
  • Dong-Ju Lee (Department of Pharmacy, Kangwon National University) ;
  • Ah-Ra Jang (Nodcure, Inc.) ;
  • Sungyun Kim (Department of Pharmacy, Kangwon National University) ;
  • Hyun-Jong Cho (Department of Pharmacy, Kangwon National University) ;
  • Jae-Young Lee (Nodcure, Inc.) ;
  • Jong-Hwan Park (Nodcure, Inc.) ;
  • Young-Min Kim (Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Hyun-Jeong Ko (Department of Pharmacy, Kangwon National University)
  • Received : 2024.03.20
  • Accepted : 2024.06.10
  • Published : 2024.09.01

Abstract

β-glucan, a polysaccharide found in various sources, exhibits unique physicochemical properties, yet its high polymerization limits clinical applications because of its solubility. Addressing this limitation, we introduce PPTEE-glycan, a highly purified soluble β-1,3/1,6-glucan derived from Aureobasidium pullulans. The refined PPTEE-glycan demonstrated robust immune stimulation in vitro, activated dendritic cells, and enhanced co-stimulatory markers, cytokines, and cross-presentation. Formulated as a PPTEE + microemulsion (ME), it elevated immune responses in vivo, promoting antigen-specific antibodies and CD8+ T cell proliferation. Intratumoral administration of PPTEE + ME in tumor-bearing mice induced notable tumor regression, which was linked to the activation of immunosuppressive cells. This study highlights the potential of high-purity Aureobasidium pullulans-derived β-glucan, particularly PPTEE, as promising immune adjuvants, offering novel avenues for advancing cancer immunotherapy.

Keywords

References

  1. Adachi, Y., Ohno, N., Ohsawa, M., Oikawa, S. and Yadomae, T. (1990) Change of biological activities of (1----3)-beta-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chem. Pharm. Bull. (Tokyo) 38, 477-481. https://doi.org/10.1248/cpb.38.477
  2. Albeituni, S. H., Ding, C., Liu, M., Hu, X., Luo, F., Kloecker, G., Bousamra, M., 2nd, Zhang, H. G. and Yan, J. (2016) Correction: yeast-derived particulate beta-glucan treatment subverts the suppression of myeloid-derived suppressor cells (mdsc) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J. Immunol. 196, 3967.
  3. Alloatti, A., Kotsias, F., Pauwels, A. M., Carpier, J. M., Jouve, M., Timmerman, E., Pace, L., Vargas, P., Maurin, M., Gehrmann, U., Joannas, L., Vivar, O. I., Lennon-Dumenil, A. M., Savina, A., Gevaert, K., Beyaert, R., Hoffmann, E. and Amigorena, S. (2015) Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 43, 1087-1100. https://doi.org/10.1016/j.immuni.2015.11.006
  4. Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T. and Zare, P. (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59.
  5. Bayat Mokhtari, R., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B. and Yeger, H. (2017) Combination therapy in combating cancer. Oncotarget 8, 38022-38043. https://doi.org/10.18632/oncotarget.16723
  6. Berraondo, P., Sanmamed, M. F., Ochoa, M. C., Etxeberria, I., Aznar, M. A., Perez-Gracia, J. L., Rodriguez-Ruiz, M. E., Ponz-Sarvise, M., Castanon, E. and Melero, I. (2019) Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6-15. https://doi.org/10.1038/s41416-018-0328-y
  7. Brown, G. D. and Gordon, S. (2003) Fungal beta-glucans and mammalian immunity. Immunity 19, 311-315. https://doi.org/10.1016/S1074-7613(03)00233-4
  8. Camilli, G., Tabouret, G. and Quintin, J. (2018) The complexity of fungal beta-glucan in health and disease: effects on the mononuclear phagocyte system. Front. Immunol. 9, 673.
  9. De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G. R., Leclercq, G., Allais, L., Pilette, C., Dierendonck, M., De Geest, B. G. and Cuvelier, C. A. (2013) beta-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release 172, 671-678. https://doi.org/10.1016/j.jconrel.2013.09.007
  10. Ding, C., Shrestha, R., Zhu, X., Geller, A. E., Wu, S., Woeste, M. R., Li, W., Wang, H., Yuan, F., Xu, R., Chariker, J. H., Hu, X., Li, H., Tieri, D., Zhang, H. G., Rouchka, E. C., Mitchell, R., Siskind, L. J., Zhang, X., Xu, X. G., McMasters, K. M., Yu, Y. and Yan, J. (2023) Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat. Immunol. 24, 239-254.
  11. Drummond, R. A. and Brown, G. D. (2011) The role of Dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 14, 392-399. https://doi.org/10.1016/j.mib.2011.07.001
  12. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356. https://doi.org/10.1021/ac60111a017
  13. Fu, J., Kanne, D. B., Leong, M., Glickman, L. H., McWhirter, S. M., Lemmens, E., Mechette, K., Leong, J. J., Lauer, P., Liu, W., Sivick, K. E., Zeng, Q., Soares, K. C., Zheng, L., Portnoy, D. A., Woodward, J. J., Pardoll, D. M., Dubensky, T. W., Jr. and Kim, Y. (2015) STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra252.
  14. Goodridge, H. S., Wolf, A. J. and Underhill, D. M. (2009) Beta-glucan recognition by the innate immune system. Immunol. Rev. 230, 38-50. https://doi.org/10.1111/j.1600-065X.2009.00793.x
  15. Han, B., Baruah, K., Cox, E., Vanrompay, D. and Bossier, P. (2020) Structure-functional activity relationship of beta-glucans from the perspective of immunomodulation: a mini-review. Front. Immunol. 11, 658.
  16. Hong, F., Yan, J., Baran, J. T., Allendorf, D. J., Hansen, R. D., Ostroff, G. R., Xing, P. X., Cheung, N. K. and Ross, G. D. (2004) Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173, 797-806. https://doi.org/10.4049/jimmunol.173.2.797
  17. Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. (2010) Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. mBio 1, e00164-10.
  18. Huang, L., Xu, H. and Peng, G. (2018) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell. Mol. Immunol. 15, 428-437. https://doi.org/10.1038/cmi.2018.4
  19. Ikewaki, N., Dedeepiya, V. D., Raghavan, K., Rao, K. S., Vaddi, S., Osawa, H., Kisaka, T., Kurosawa, G., Srinivasan, S., Kumar, S. R. B., Senthilkumar, R., Iwasaki, M., Preethy, S. and Abraham, S. J. K. (2022) beta-glucan vaccine adjuvant approach for cancer treatment through immune enhancement (B-VACCIEN) in specific immunocompromised populations (review). Oncol. Rep. 47, 14.
  20. Kawai, T. and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384. https://doi.org/10.1038/ni.1863
  21. Khurana, S., Chearwae, W., Castellino, F., Manischewitz, J., King, L. R., Honorkiewicz, A., Rock, M. T., Edwards, K. M., Del Giudice, G., Rappuoli, R. and Golding, H. (2010) Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci. Transl. Med. 2, 15ra15.
  22. Kim, H. J. and White, P. J. (2013) Impact of the molecular weight, viscosity, and solubility of beta-glucan on in vitro oat starch digestibility. J. Agric. Food Chem. 61, 3270-3277. https://doi.org/10.1021/jf305348j
  23. Lao, Y., Shen, D., Zhang, W., He, R. and Jiang, M. (2022) Immune checkpoint inhibitors in cancer therapy-how to overcome drug resistance? Cancers (Basel) 14, 3575.
  24. Lee, C., Verma, R., Byun, S., Jeun, E. J., Kim, G. C., Lee, S., Kang, H. J., Kim, C. J., Sharma, G., Lahiri, A., Paul, S., Kim, K. S., Hwang, D. S., Iwakura, Y., Speciale, I., Molinaro, A., De Castro, C., Rudra, D. and Im, S. H. (2021) Structural specificities of cell surface beta-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nat. Commun. 12, 3611.
  25. Lee, J. J., Shim, A., Lee, S. Y., Kwon, B. E., Kim, S. R., Ko, H. J. and Cho, H. J. (2016) Ready-to-use colloidal adjuvant systems for intranasal immunization. J. Colloid Interface Sci. 467, 121-128. https://doi.org/10.1016/j.jcis.2016.01.006
  26. Lei, N., Wang, M., Zhang, L., Xiao, S., Fei, C., Wang, X., Zhang, K., Zheng, W., Wang, C., Yang, R. and Xue, F. (2015) Effects of low molecular weight yeast beta-glucan on antioxidant and immunological activities in mice. Int. J. Mol. Sci. 16, 21575-21590. https://doi.org/10.3390/ijms160921575
  27. Li, P., Tan, H., Xu, D., Yin, F., Cheng, Y., Zhang, X., Liu, Y. and Wang, F. (2014) Effect and mechanisms of curdlan sulfate on inhibiting HBV infection and acting as an HB vaccine adjuvant. Carbohydr. Polym. 110, 446-455. https://doi.org/10.1016/j.carbpol.2014.04.025
  28. Lin, M. J., Svensson-Arvelund, J., Lubitz, G. S., Marabelle, A., Melero, I., Brown, B. D. and Brody, J. D. (2022) Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911-926. https://doi.org/10.1038/s43018-022-00418-6
  29. Luchner, M., Reinke, S. and Milicic, A. (2021) TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics 13, 142.
  30. Marques, H. S., de Brito, B. B., da Silva, F. A. F., Santos, M. L. C., de Souza, J. C. B., Correia, T. M. L., Lopes, L. W., Neres, N. S. M., Dorea, R., Dantas, A. C. S., Morbeck, L. L. B., Lima, I. S., de Almeida, A. A., Dias, M. R. J. and de Melo, F. F. (2021) Relationship between Th17 immune response and cancer. World J. Clin. Oncol. 12, 845-867. https://doi.org/10.5306/wjco.v12.i10.845
  31. Moorlag, S., Khan, N., Novakovic, B., Kaufmann, E., Jansen, T., van Crevel, R., Divangahi, M. and Netea, M. G. (2020) beta-Glucan induces protective trained immunity against mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep. 31, 107634.
  32. Pirow, R., Blume, A., Hellwig, N., Herzler, M., Huhse, B., Hutzler, C., Pfaff, K., Thierse, H. J., Tralau, T., Vieth, B. and Luch, A. (2019) Mineral oil in food, cosmetic products, and in products regulated by other legislations. Crit. Rev. Toxicol. 49, 742-789. https://doi.org/10.1080/10408444.2019.1694862
  33. Pulendran, B., S Arunachalam, P. and O'Hagan, D. T. (2021) Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454-475. https://doi.org/10.1038/s41573-021-00163-y
  34. Reed, S. G., Orr, M. T. and Fox, C. B. (2013) Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597-1608. https://doi.org/10.1038/nm.3409
  35. Saijo, S. and Iwakura, Y. (2011) Dectin-1 and Dectin-2 in innate immunity against fungi. Int. Immunol. 23, 467-472. https://doi.org/10.1093/intimm/dxr046
  36. Schirrmacher, V. (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int. J. Oncol. 54, 407-419. https://doi.org/10.3892/ijo.2018.4661
  37. Schoenfeld, A. J. and Hellmann, M. D. (2020) Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443-455. https://doi.org/10.1016/j.ccell.2020.03.017
  38. Shimizu, K., Iyoda, T., Okada, M., Yamasaki, S. and Fujii, S. I. (2018) Immune suppression and reversal of the suppressive tumor microenvironment. Int. Immunol. 30, 445-454. https://doi.org/10.1093/intimm/dxy042
  39. Shui, Y., Hu, X., Hirano, H., Kusano, K., Tsukamoto, H., Li, M., Hasumi, K., Guo, W. Z. and Li, X. K. (2021) beta-Glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int. Immunopharmacol. 101, 108265.
  40. Suzuki, T., Kusano, K., Kondo, N., Nishikawa, K., Kuge, T. and Ohno, N. (2021) Biological activity of high-purity beta-1,3-1,6-glucan derived from the black yeast aureobasidium pullulans: a literature review. Nutrients 13, 242.
  41. Tan, S., Li, D. and Zhu, X. (2020) Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821.
  42. Toor, S. M., Sasidharan Nair, V., Decock, J. and Elkord, E. (2020) Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 65, 1-12. https://doi.org/10.1016/j.semcancer.2019.06.021
  43. Umansky, V., Blattner, C., Gebhardt, C. and Utikal, J. (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4, 36.
  44. Veglia, F., Sanseviero, E. and Gabrilovich, D. I. (2021) Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485-498. https://doi.org/10.1038/s41577-020-00490-y
  45. Vetvicka, V. and Vetvickova, J. (2015) Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann. Transl. Med. 3, 22.
  46. Wagner, J., Wickman, E., DeRenzo, C. and Gottschalk, S. (2020) CAR T cell therapy for solid tumors: bright future or dark reality? Mol. Ther. 28, 2320-2339. https://doi.org/10.1016/j.ymthe.2020.09.015
  47. Yi, E. J., Kim, Y. I., Song, J. H., Ko, H. J. and Chang, S. Y. (2023) Intranasal immunization with curdlan induce Th17 responses and enhance protection against enterovirus 71. Vaccine 41, 2243-2252. https://doi.org/10.1016/j.vaccine.2023.01.074