과제정보
이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(1711194613, RS-2023-00213733).
참고문헌
- E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German and D. Damian, "The promises and perils of mining github," in Proceedings of the 11th Working Conference on Mining Software Repositories, pp.92-101, 2014.
- E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, "An in-depth study of the promises and perils of mining GitHub," Empirical Software Engineering, Vol.21, pp.2035-2071, 2016. https://doi.org/10.1007/s10664-015-9393-5
- H. Borges, A. Hora, and M. T. Valente, "Understanding the factors that impact the popularity of GitHub repositories," in 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp.334-344, 2016.
- H. Borges, A. Hora, and M. T. Valente, "Predicting the popularity of github repositories," in Proceedings of the The 12th International Conference on Predictive Models and Data Analytics in Software Engineering, pp.1-10, 2016.
- S. Weber and J. Luo, "What makes an open source code popular on github?," in 2014 IEEE International Conference on Data Mining Workshop, pp.851-855, 2014.
- Y. Fan, X. Xia, D. Lo, A. E. Hassan, and S. Li, "What makes a popular academic AI repository?," Empirical Software Engineering, Vol.26, pp.1-35, 2021. https://doi.org/10.1007/s10664-020-09901-z
- Y. Liu, E. Noei, and K. Lyons, "How ReadMe files are structured in open source Java projects," Information and Software Technology, Vol.148, pp.1-11, 2022. https://doi.org/10.1016/j.infsof.2022.106924
- K. Aggarwal, A. Hindle, and E. Stroulia, "Co-evolution of project documentation and popularity within github," in Proceedings of the 11th Working Conference on Mining Software Repositories, pp.360-363, 2014.
- J. Zhu, M. Zhou, and A. Mockus, "Patterns of folder use and project popularity: A case study of GitHub repositories," in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp.1-4, 2014.
- C. Phua, D. Alahakoon, and V. Lee, "Minority report in fraud detection: Classification of skewed data," ACM SIGKDD Explorations Newsletter, Vol.6, No.1, pp.50-59, 2004. https://doi.org/10.1145/1007730.1007738
- T. L. Alves, C. Ypma, and J. Visser, "Deriving metric thresholds from benchmark data," in 2010 IEEE International Conference on Software Maintenance, pp.1-10, 2010.
- M. Yan, X. Xia, X. Zhang, D. Yang, and L. Xu, "Automating aggregation for software quality modeling," in 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp.529-533, 2017.
- A. S. M. Venigalla and S. Chimalakonda, "An empirical study on correlation between readme content and project popularity," arXiv e-prints, arXiv-2206, 2022.
- W. H. Kruskal and W. A. Wallis, "Use of ranks in one-criterion variance analysis," Journal of the American statistical Association, Vol.47, No.260, pp.583-621, 1952. https://doi.org/10.1080/01621459.1952.10483441
- G. W. Corder and D. I. Foreman, "Nonparametric statistics for non-statisticians," Hoboken: John Wiley & Sons. pp. 99-105. ISBN 9780470454619.
- A. B. Cantor, "Sample-size calculations for Cohen's kappa," Psychol Methods, Vol.1, No.150, 1996.
- M. Hess and J. Kromrey, "Robust confidence intervals for effect sizes: A comparative study of cohen's d and cliff's delta under non-normality and heterogeneous variances," in the Annual Meeting of the American Educational Research Association, pp.1-30, 2004.
- E. Noei, F. Zhang, S. Wang, and Y. Zou, "Towards prioritizing user-related issue reports of mobile applications," Empirical Software Engineering, Vol.24, pp.1964-1996, 2019. https://doi.org/10.1007/s10664-019-09684-y
- G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, "Categorizing the content of github readme files," Empirical Software Engineering, Vol.24, pp.1296-1327, 2019. https://doi.org/10.1007/s10664-018-9660-3
- F. Zanartu, C. Treude, B. Cartaxo, H. S. Borges, P. Moura, M. Wagner, and G. Pinto, "Automatically categorising github repositories by application domain," arXiv preprint arXiv:2208.00269.