과제정보
본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S3278476]. 이 논문은 2020년도 정부 (교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. 2020R1I1A3052733). 이 성과는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1C1C2095696). 본 논문은 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력선도대학 육성사업 (LINC 3.0)의 연구결과입니다.
참고문헌
- M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, ''Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things", Inf. Fusion, Vol.94, pp.17-31, 2023. https://doi.org/10.1016/j.inffus.2023.01.015
- E. Ramanujam, T. Perumal, and S. Padmavathi, "Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review," IEEE Sens. J., Vol.21, No.12, pp.13029-13040, 2021. https://doi.org/10.1109/JSEN.2021.3069927
- Y. Jang, I. Jeong, M. Y. Heravi, S. Sarkar, H. Shin, and Y.Ahn, "Multi-Camera-Based Human Activity Recognition for Human-Robot Collaboration in Construction," Sensors, Vol.23, No.15, pp.6997:1-6997:20, 2023. https://doi.org/10.3390/s23156997
- C. F. Hsieh, Y. C. Chen, C. Y. Hsieh, and M. L. Ku, "Device-Free Indoor Human Activity Recognition Using Wi-Fi RSSI: Machine Learning Approaches," in Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 2020.
- P. F. Moshiri, R. Shahbazian, M. Nabati, and S. A. Ghorashi, "A CSI-based human activity recognition using deep learning," Sensors, Vol.21, No.21, pp.7225:1-7225:19, 2021. https://doi.org/10.3390/s21217225
- N. Damodaran and J. Schafer, "Device Free Human Activity Recognition using WiFi Channel State Information," in Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Leicester, UK, 2019.
- J. Ding and Y. Wang, "WiFi CSI-Based human activity recognition using deep recurrent neural network," IEEE Access, Vol.7, pp.174257-174269, 2019. https://doi.org/10.1109/ACCESS.2019.2956952
- B. A. Alsaify, M. M. Almazari, R. Alazrai, S. Alouneh, and M. I. Daoud, "A CSI-based multi-environment human activity recognition framework," Appl. Sci.-Basel, Vol.12, No.2, pp.930:1-930:29, 2022. https://doi.org/10.3390/app12020930
- R. Alazrai, M. Hababeh, B. A. Alsaify, M. Z. Ali, and M. I. Daoud, "An end-to-end deep learning framework for recognizing human-to-human interactions using Wi-Fi signals," IEEE Access, Vol.8, pp.197695-197710, 2020. https://doi.org/10.1109/ACCESS.2020.3034849
- H. Li, X. He, X. Chen, Y. Fang, and Q. Fang, "Wi-motion: A robust human activity recognition using WiFi signals," IEEE Access, Vol.7, pp.153287-153299, 2019. https://doi.org/10.1109/ACCESS.2019.2948102
- A. Natarajan, V. Krishnasamy, and M. Singh, "A Machine Learning Approach to Passive Human Motion Detection using WiFi Measurements from Commodity IoT Devices," IEEE Trans. Instrum. Meas., Vol.72, pp.1-10, 2023. https://doi.org/10.1109/TIM.2023.3272374
- M. S. Islam, M. K. A. Jannat, M. N. Hossain, W. S. Kim, S. W. Lee, and S. H. Yang, "STC-NLSTMNet: An Improved Human Activity Recognition Method Using Convolutional Neural Network with NLSTM from WiFi CSI," Sensors, Vol.23, pp.356:1-356:21, 2022. https://doi.org/10.3390/s23010356
- Teach, Learn, and Make with Raspberry Pi Foundation [Online]. Available: https://www.raspberrypi.org
- Nexmon [Online]. Available: https://nexmon.org
- M. Abadi et al. "TensorFlow: A system for large-scale machine learning," in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16), GA, USA, 2016.