References
- A. Ash, P. E. Gunnells, and M. McConnell, Cohomology of congruence subgroups of SL(4, ℤ). II, J. Number Theory 128 (2008), no. 8, 2263-2274. https://doi.org/10.1016/j.jnt.2007.09.002
- E. Assaf, W. Ladd, G. Rama, G. Tornaria, and J. Voight, A database of paramodular forms from quinary orthogonal modular forms, LuCaNT: LMFDB, computation, and number theory, 243-259, Contemp. Math., 796, Amer. Math. Soc., RI. https://doi.org/10.1090/conm/796/16004
- A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight, and D. S. Yuen, On the paramodularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145-1195. https://doi.org/10.2140/ant.2019.13.1145
- N. Dummigan, A. Pacetti, G. Rama, and G. Tornaria, Quinary forms and paramodular forms, Math. Comp. 93 (2024), no. 348, 1805-1858. https://doi.org/10.1090/mcom/3815
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
- V. V. Golyshev and D. van Straten, Congruences via fibered motives, Pure Appl. Math. Q. 19 (2023), no. 1, 233-265.
- V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, Abelian varieties (Egloffstein, 1993), 63-84, De Gruyter, Berlin, 1995.
- V. A. Gritsenko. 24 faces of the Borcherds modular form ϕ12, arXiv:1203.6503, 2012.
- V. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 3, 461-485. https://doi.org/10.1017/S0305004197002259
- V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 201-275. https://doi.org/10.1142/S0129167X98000117
- V. Gritsenko, C. Poor, and D. S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164-195. https://doi.org/10.1016/j.jnt.2014.07.028
- V. A. Gritsenko, N.-P. Skoruppa, and D. Zagier, Theta blocks, arXiv:1907.00188v1, 2019.
- J. Hein, Orthogonal modular forms: A application to a conjecture of Birch, algorithms and computations, PhD thesis, Dartmouth College, 2016. https://doi.org/10.1349/ddlp.2156
- T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 587-614.
- T. Ibukiyama, On relations of dimensions of automorphic forms of Sp(2, R) and its compact twist Sp(2). I, Automorphic forms and number theory (Sendai, 1983), 7-30, Adv. Stud. Pure Math., 7, North-Holland, Amsterdam, 1985. https://doi.org/10.2969/aspm/00710007
- T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian varieties, Siegel Modular Forms and Abelian Varieties, Proceedings of the 4th Spring Conference on Modular Forms and Related Topics, pages 39-60, 2007.
- T. Ibukiyama, Paramodular forms and compact twist, Automorphic forms on GSp(4): Proceedings of the 9th Autumn Workshop on Number Theory, pages 37-48, 2007.
- T. Ibukiyama, Quinary lattices and binary quaternion hermitian lattices, Tohoku Math. J. (2) 71 (2019), no. 2, 207-220. https://doi.org/10.2748/tmj/1561082596
- T. Ibukiyama and H. Kitayama, Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69 (2017), no. 2, 597-671. https://doi.org/10.2969/jmsj/06920597
- J. Johnson-Leung and B. Roberts, Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory 132 (2012), no. 4, 543-564. https://doi.org/10.1016/j.jnt.2011.08.004
- W. B. Ladd, Algebraic modular forms on SU5(ℚ) and the computation of paramodular forms, PhD thesis, UC Berkeley, 2018.
- The LMFDB Collaboration. The L-functions and modular forms database. https://www.lmfdb.org, 2024. [Online; accessed 26 February 2024].
- C. Poor, J. Shurman, and D. S. Yuen, Siegel paramodular forms of weight 2 and squarefree level, Int. J. Number Theory 13 (2017), no. 10, 2627-2652. https://doi.org/10.1142/S1793042117501469
- C. Poor and D. S. Yuen, Dimensions of cusp forms for Γ0(p) in degree two and small weights, Abh. Math. Sem. Univ. Hamburg 77 (2007), 59-80. https://doi.org/10.1007/BF03173489
- C. Poor and D. S. Yuen, The cusp structure of the paramodular groups for degree two, J. Korean Math. Soc. 50 (2013), no. 2, 445-464. https://doi.org/10.4134/JKMS.2013.50.2.445
- C. Poor and D. S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6
- G. Rama and G. Tornar'ia, Computation of paramodular forms, ANTS XIV-Proceedings of the Fourteenth Algorithmic Number Theory Symposium, 353-370, Open Book Ser., 4, Math. Sci. Publ., Berkeley, CA, 2020. https://doi.org/10.2140/obs.2020.4.353
- G. Rama and G. Tornaria, Quinary orthogonal modular forms, 2020. http://www.cmat.edu.uy/cnt/.
- H. Reefschlager, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2-ten Grades. PhD thesis, Georg-August-Universitat zu Gottingen, 1973.
- B. Roberts and R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathematics, 1918, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73324-9
- M. Rosner and R. Weissauer, Global liftings between inner forms of GSp(4), J. Number Theory 263 (2024), 79-138. https://doi.org/10.1016/j.jnt.2024.04.010
- R. Schmidt, Packet structure and paramodular forms, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3085-3112. https://doi.org/10.1090/tran/7028
- N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. https://doi.org/10.1515/crll.1989.393.168
- P. van Hoften, A geometric Jacquet-Langlands correspondence for paramodular Siegel threefolds, Math. Z. 299 (2021), no. 3-4, 2029-2061. https://doi.org/10.1007/s00209-021-02756-0
- D. S. Yuen, C. Poor, and J. Shurman, Eigenvalues for the weight three paramodular nonlifts of levels 61, 73, and 79, 2022. http://www.siegelmodularforms.org/pages/degree2/day61/