DOI QR코드

DOI QR Code

EIGENVALUES AND CONGRUENCES FOR THE WEIGHT 3 PARAMODULAR NONLIFTS OF LEVELS 61, 73, AND 79

  • Cris Poor (Department of Mathematics Fordham University) ;
  • Jerry Shurman (Department of Mathematics Reed College) ;
  • David S. Yuen (Korean Mathematical Society)
  • Received : 2023.07.27
  • Accepted : 2024.04.19
  • Published : 2024.09.01

Abstract

We use Borcherds products to give a new construction of the weight 3 paramodular nonlift eigenform fN for levels N = 61, 73, 79. We classify the congruences of fN to Gritsenko lifts. We provide techniques that compute eigenvalues to support future modularity applications. Our method does not compute Hecke eigenvalues from Fourier coefficients but instead uses elliptic modular forms, specifically the restrictions of Gritsenko lifts and their images under the slash operator to modular curves.

Keywords

References

  1. A. Ash, P. E. Gunnells, and M. McConnell, Cohomology of congruence subgroups of SL(4, ℤ). II, J. Number Theory 128 (2008), no. 8, 2263-2274. https://doi.org/10.1016/j.jnt.2007.09.002 
  2. E. Assaf, W. Ladd, G. Rama, G. Tornaria, and J. Voight, A database of paramodular forms from quinary orthogonal modular forms, LuCaNT: LMFDB, computation, and number theory, 243-259, Contemp. Math., 796, Amer. Math. Soc., RI. https://doi.org/10.1090/conm/796/16004 
  3. A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight, and D. S. Yuen, On the paramodularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145-1195. https://doi.org/10.2140/ant.2019.13.1145 
  4. N. Dummigan, A. Pacetti, G. Rama, and G. Tornaria, Quinary forms and paramodular forms, Math. Comp. 93 (2024), no. 348, 1805-1858. https://doi.org/10.1090/mcom/3815 
  5. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3 
  6. V. V. Golyshev and D. van Straten, Congruences via fibered motives, Pure Appl. Math. Q. 19 (2023), no. 1, 233-265. 
  7. V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, Abelian varieties (Egloffstein, 1993), 63-84, De Gruyter, Berlin, 1995. 
  8. V. A. Gritsenko. 24 faces of the Borcherds modular form ϕ12, arXiv:1203.6503, 2012. 
  9. V. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 3, 461-485. https://doi.org/10.1017/S0305004197002259 
  10. V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 201-275. https://doi.org/10.1142/S0129167X98000117 
  11. V. Gritsenko, C. Poor, and D. S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164-195. https://doi.org/10.1016/j.jnt.2014.07.028 
  12. V. A. Gritsenko, N.-P. Skoruppa, and D. Zagier, Theta blocks, arXiv:1907.00188v1, 2019. 
  13. J. Hein, Orthogonal modular forms: A application to a conjecture of Birch, algorithms and computations, PhD thesis, Dartmouth College, 2016. https://doi.org/10.1349/ddlp.2156 
  14. T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 587-614. 
  15. T. Ibukiyama, On relations of dimensions of automorphic forms of Sp(2, R) and its compact twist Sp(2). I, Automorphic forms and number theory (Sendai, 1983), 7-30, Adv. Stud. Pure Math., 7, North-Holland, Amsterdam, 1985. https://doi.org/10.2969/aspm/00710007 
  16. T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian varieties, Siegel Modular Forms and Abelian Varieties, Proceedings of the 4th Spring Conference on Modular Forms and Related Topics, pages 39-60, 2007. 
  17. T. Ibukiyama, Paramodular forms and compact twist, Automorphic forms on GSp(4): Proceedings of the 9th Autumn Workshop on Number Theory, pages 37-48, 2007. 
  18. T. Ibukiyama, Quinary lattices and binary quaternion hermitian lattices, Tohoku Math. J. (2) 71 (2019), no. 2, 207-220. https://doi.org/10.2748/tmj/1561082596 
  19. T. Ibukiyama and H. Kitayama, Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69 (2017), no. 2, 597-671. https://doi.org/10.2969/jmsj/06920597 
  20. J. Johnson-Leung and B. Roberts, Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory 132 (2012), no. 4, 543-564. https://doi.org/10.1016/j.jnt.2011.08.004 
  21. W. B. Ladd, Algebraic modular forms on SU5(ℚ) and the computation of paramodular forms, PhD thesis, UC Berkeley, 2018. 
  22. The LMFDB Collaboration. The L-functions and modular forms database. https://www.lmfdb.org, 2024. [Online; accessed 26 February 2024]. 
  23. C. Poor, J. Shurman, and D. S. Yuen, Siegel paramodular forms of weight 2 and squarefree level, Int. J. Number Theory 13 (2017), no. 10, 2627-2652. https://doi.org/10.1142/S1793042117501469 
  24. C. Poor and D. S. Yuen, Dimensions of cusp forms for Γ0(p) in degree two and small weights, Abh. Math. Sem. Univ. Hamburg 77 (2007), 59-80. https://doi.org/10.1007/BF03173489
  25. C. Poor and D. S. Yuen, The cusp structure of the paramodular groups for degree two, J. Korean Math. Soc. 50 (2013), no. 2, 445-464. https://doi.org/10.4134/JKMS.2013.50.2.445 
  26. C. Poor and D. S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6 
  27. G. Rama and G. Tornar'ia, Computation of paramodular forms, ANTS XIV-Proceedings of the Fourteenth Algorithmic Number Theory Symposium, 353-370, Open Book Ser., 4, Math. Sci. Publ., Berkeley, CA, 2020. https://doi.org/10.2140/obs.2020.4.353 
  28. G. Rama and G. Tornaria, Quinary orthogonal modular forms, 2020. http://www.cmat.edu.uy/cnt/. 
  29. H. Reefschlager, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2-ten Grades. PhD thesis, Georg-August-Universitat zu Gottingen, 1973. 
  30. B. Roberts and R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathematics, 1918, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73324-9 
  31. M. Rosner and R. Weissauer, Global liftings between inner forms of GSp(4), J. Number Theory 263 (2024), 79-138. https://doi.org/10.1016/j.jnt.2024.04.010 
  32. R. Schmidt, Packet structure and paramodular forms, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3085-3112. https://doi.org/10.1090/tran/7028 
  33. N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. https://doi.org/10.1515/crll.1989.393.168 
  34. P. van Hoften, A geometric Jacquet-Langlands correspondence for paramodular Siegel threefolds, Math. Z. 299 (2021), no. 3-4, 2029-2061. https://doi.org/10.1007/s00209-021-02756-0 
  35. D. S. Yuen, C. Poor, and J. Shurman, Eigenvalues for the weight three paramodular nonlifts of levels 61, 73, and 79, 2022. http://www.siegelmodularforms.org/pages/degree2/day61/