DOI QR코드

DOI QR Code

Effect of various types of dental magnetostrictive ultrasonic scaler tip on surface characteristics of titanium

여러가지 치과용 자기변형 초음파 스케일러 팁이 티타늄 표면특성에 미치는 영향

  • Min-Cheol Yang (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Seok-Hwan Jeong (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Seol Kim (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Seung-Hwan Seol (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Seung-Kyu Lee (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Sang-Joun Yu (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Byung-Ock Kim (Department of Periodontology, School of Dentistry, Chosun University)
  • 양민철 (조선대학교 치과대학 치주과학교실) ;
  • 정석환 (조선대학교 치과대학 치주과학교실) ;
  • 김설 (조선대학교 치과대학 치주과학교실) ;
  • 설승환 (조선대학교 치과대학 치주과학교실) ;
  • 이승규 (조선대학교 치과대학 치주과학교실) ;
  • 유상준 (조선대학교 치과대학 치주과학교실) ;
  • 김병옥 (조선대학교 치과대학 치주과학교실)
  • Received : 2024.07.18
  • Accepted : 2024.07.24
  • Published : 2024.08.31

Abstract

The aim of this in vitro study was to evaluate the changes in the roughness and weight of titanium discs treated with 3 different types of magnetostrictive ultrasonic scaler tip. Eighty identical disks (10 mm in diameter), 50 for surface roughness and 30 for weight change, were investigated in this study. For this study, 3 types of scaler tip were used as follows; Powerline(FSI-PWR-1000), Slimline(FSI-SLI-1000), and Thinsert(-16 00037374). The power was set to high power(HP), medium power(MP), and low power(LP), in the blue zone recommended by the manufacturer. Surface topography analysis was carried out using scanning electron microscopy (SEM). Surface roughness measurements, the average surface roughness (Ra) and mean roughness profile depth (Rz), were compared between treated and non-treated surfaces with a profilometer. A PowerLINE-MP of magnetostrictive ultrasonic scalers for implant patients might be recommended when considering changes in the roughness and weight of titanium discs.

Keywords

Acknowledgement

이 논문은 2023년도 조선대학교 치과병원 학술연구비의 지원을 받아 연구되었음.

References

  1. U. Joos, M. Ulrich, New paradigm in implant osseointegration, Head Face Medicine, 2 (2006) 1-19.  https://doi.org/10.1186/1746-160X-2-1
  2. M. Dierens, S. Vandeweghe, J. Kisch, K. Nilner, H. De Bruyn, Long-term follow-up of turned single implants placed in periodontally healthy patients after 16-22 years: radiographic and peri-implant outcome, Clinical Oral Implants Research, 23 (2012) 197-204.  https://doi.org/10.1111/j.1600-0501.2011.02212.x
  3. V. Chappuis, R. Buser, U. Bragger, M.M. Bornstein, G.E. Salvi, D. Buser, Long-term outcomes of dental implants with a titanium plasma-sprayed surface: a 20-year prospective case series study in partially edentulous patients, Clinical Implant Dentistry and Related Research, 15 (2013) 780-790.  https://doi.org/10.1111/cid.12056
  4. A. Pozzi, L. Arcuri, G. Fabbri, G. Singer, J. Londono, Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: A retrospective multicenter study, The Journal of Prosthetic Dentistry, 129 (2023) 96-108. 
  5. T. Albrektsson, D. Buser, L. Sennerby, Crestal bone loss and oral implants, Clinical Implant Dentistry and Related Research, 14 (2012) 783-791.  https://doi.org/10.1111/cid.12013
  6. A. Mombelli, N. Muller, N. Cionca, The epidemiology of periimplantitis, Clinical Oral Implants Research, 23 (2012) 67-76. 
  7. J.H. Fu, H.L. Wang, Breaking the wave of peri-implantitis, Periodontology 2000, 84 (2020) 145-160.  https://doi.org/10.1111/prd.12335
  8. G.N. Belibasakis, G. Charalampakis, N. Bostanci, B. Stadlinger, Peri-implant infections of oral biofilm etiology, Advances in Experimental Medicine and Biology, 830 (2015) 69-84.  https://doi.org/10.1007/978-3-319-11038-7_4
  9. A. Han, J.K.H. Tsoi, F.P. Rodrigues, J.G. Leprince, W.M. Palin, Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors, International Journal of Adhesion and Adhesives, (2016) 58-71. 
  10. E. Figuero, F. Graziani, I. Sanz, D. Herrera, M. Sanz, Management of peri-implant mucositis and peri-implantitis, Periodontology 2000, 66 (2014) 255-273.  https://doi.org/10.1111/prd.12049
  11. D. Thomson-Neal, G.H. Evans, R.M. Meffert, Effects of various prophylactic treatments on titanium, sapphire, and hydroxyapatite-coated implants: an SEM study, International Journal of Periodontics & Restorative Dentistry, 9 (1989) 300-311. 
  12. G.M. Bailey, J.S. Gardner, M.H. Day, B.J. Kovanda, Implant surface alterations from a nonmetallic ultrasonic tip, The Journal of the Western Society of Periodontology/Periodontal Abstracts, 46 (1998) 69-73. 
  13. W. Yen Nee, R.A. Raja Awang, A. Hassan, Effects on the titanium implant surface by different hygiene instrumentations: a narrative review, Cureus, 14 (2022) e30884. 
  14. S. Vandeweghe, D. Ferreira, L. Vermeersch, M. Marien, H. De Bruyn, Long-term retrospective follow-up of turned and moderately rough implants in the edentulous jaw, Clinical Oral Implants Research, 27 (2016) 421-426. 
  15. J.B. Park, Y.J. Jang, B.K. Choi, K.K. Kim, Y.K. Ko, Treatment with various ultrasonic scaler tips affects efficiency of brushing of SLA titanium discs, Journal of Craniofacial Surgery, 24 (2013) 119-123. 
  16. M.C. Yang, S.H. Jeong, H.M. Lee, S.H. Sul, S.K. Lee, S.J. Yu, B.O. Kim, Effect of a metallic ultrasonic scaler tip on titanium surfaces: a preliminary study, Oral Biology Research, 48 (2024) 1-6. 
  17. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1683.  https://doi.org/10.1557/JMR.1992.1564
  18. G.J. Smart, M. Wilson, E.H. Davies, J.B. Kieser, The assessment of ultrasonic root surface debridement by determination of residual endotoxin levels, Journal of Clinical Periodontology, 17 (1990) 174-178.  https://doi.org/10.1111/j.1600-051X.1990.tb01082.x
  19. O. Unursaikhan, J.S. Lee, J.K. Cha, J.C. Park, U.W. Jung, C.S. Kim, K.S. Cho, S.H. Choi, Comparative evaluation of roughness of titanium surfaces treated by different hygiene instruments, Journal of Periodontal & Implant Science, 42 (2012) 88-94.  https://doi.org/10.5051/jpis.2012.42.3.88
  20. S. Sato, M. Kishida, K. Ito, The comparative effect of ultrasonic scalers on titanium surfaces: an in vitro study, Journal of Periodontology, 75 (2004) 1269-1273.  https://doi.org/10.1902/jop.2004.75.9.1269
  21. A. Tawse-Smith, M.A. Atieh, G. Tompkins, W.J. Duncan, M.R. Reid, C.H. Stirling, The effect of piezoelectric ultrasonic instrumentation on titanium discs: a microscopy and trace elemental analysis in vitro study, International Journal of Dental Hygiene, 14 (2016) 191-201.  https://doi.org/10.1111/idh.12142
  22. J.B. Park, Y.J. Jang, M.C. Koh, B.K. Choi, K.K. Kim, Y.K. Ko, In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks, Journal of Periodontology, 84 (2013) 1191-1198.  https://doi.org/10.1902/jop.2012.120369
  23. R. Mengel, C. Meer, L. Flores-de-Jacoby, The treatment of uncoated and titanium nitride-coated abutments with different instruments, International Journal of Oral and Maxillofacial Implants, 19 (2004) 232-238. 
  24. S.C. Trenter, G. Landini, A.D. Walmsley, Effect of loading on the vibration characteristics of thin magnetostrictive ultrasonic scaler inserts, Journal of Periodontology, 74 (2003) 1308-1315.  https://doi.org/10.1902/jop.2003.74.9.1308
  25. A.D. Walmsley, Potential hazards of the dental ultrasonic descaler, Ultrasound in Medicine & Biology, 14 (1988) 15-20.  https://doi.org/10.1016/0301-5629(88)90159-7
  26. A.D. Walmsley, W.R. Laird, A.R. Williams, Dental plaque removal by cavitational activity during ultrasonic scaling, Journal of Clinical Periodontology, 15 (1988) 539-543.  https://doi.org/10.1111/j.1600-051X.1988.tb02126.x
  27. B.S. Khambay, A.D. Walmsley, Acoustic microstreaming: detection and measurement around ultrasonic scalers, Journal of Periodontology, 70 (1999) 626-631.  https://doi.org/10.1902/jop.1999.70.6.626
  28. C.L. Drisko, D.L. Cochran, T. Blieden, O.J. Bouwsma, R.E. Cohen, P. Damoulis, J.B. Fine, G. Greenstein, J. Hinrichs, M.J. Somerman, V. Iacono, R.J. Genco, Position paper: sonic and ultrasonic scalers in periodontics, Journal of Periodontology, 71 (2000) 1792-1801.  https://doi.org/10.1902/jop.2000.71.11.1792
  29. P. Baehni, B. Thilo, B. Chapuis, D. Pernet, Effects of ultrasonic and sonic scalers on dental plaque microflora in vitro and in vivo, Journal of Clinical Periodontology, 19 (1992) 455-459  https://doi.org/10.1111/j.1600-051X.1992.tb01156.x
  30. A. Busslinger, K. Lampe, M. Beuchat, B. Lehmann, A comparative in vitro study of a magnetostrictive and a piezoelectric ultrasonic scaling instrument, Journal of Clinical Periodontology, 28 (2001) 642-649.  https://doi.org/10.1034/j.1600-051x.2001.028007642.x
  31. J.B. Park, Y.J. Jang, M.C. Koh, B.K. Choi, K.K. Kim, Y.K. Ko, In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks, Journal of Periodontology, 84 (2013) 1191-1198.  https://doi.org/10.1902/jop.2012.120369
  32. M.C. Yang, S.H. Jeong, K.M. Lee, B.O. Kim, A case report of nonsurgical treatment of maxillary anterior peri-implantitis, Oral Biology Research, 46 (2022) 200-204.  https://doi.org/10.21851/obr.46.04.202212.200
  33. S.H. Jin, E.M. Lee, J.B. Park, K.K. Kim, Y.K. Ko, Decontamination methods to restore the biocompatibility of contaminated titanium surfaces, Journal of Periodontal & Implant Science, 49 (2019) 193-204.  https://doi.org/10.5051/jpis.2019.49.3.193
  34. M. Quirynen, H.C. van der Mei, C.M. Bollen, A. Schotte, M. Marechal, G.I. Doornbusch, I. Naert, H.I. Busscher, D. van Steenberghe, An in vivo study of the influence of the surface roughness of implants on the microbiology of supra-and subgingival plaque, Journal of Dental Research, 72 (1993) 1304-1309.  https://doi.org/10.1177/00220345930720090801
  35. R. Cosgarea, A. Roccuzzo, K. Jepsen, A. Sculean, S. Jepsen, G.E. Salvi, Efficacy of mechanical/physical approaches for implant surface decontamination in nonsurgical submarginal instrumentation of peri-implantitis, A systematic review, Journal of Clinical Periodontology, 50 (2023) 188-211. 
  36. Y. Ichioka, J. Derks, L. Larsson, T. Berglundh, Surface decontamination of explanted peri-implantitis-affected implants, Journal of Clinical Periodontology, 50 (2023) 1113-1122. 
  37. A. Wilensky, L. Shapira, A. Limones, C. Martin, The efficacy of implant surface decontamination using chemicals during surgical treatment of peri-implantitis: A systematic review and meta-analysis, Journal of Clinical Periodontology, 50 (2023) 336-358. 
  38. I. Sanz-Martin, K.W. Paeng, H.B. Park, J.K. Cha, U.W. Jung, M. Sanz, Significance of implant design on the efficacy of different peri-implantitis decontamination protocols, Clinical Oral Investigations, 25 (2021) 3589-3597.  https://doi.org/10.1007/s00784-020-03681-y
  39. N.P. Lang, J. Lindhe, Clinical Periodontology and Implant Dentistry. L. Heitz-Mayfield, R.P. Teles, N.P. Lang, Peri-implant infection, 6th ed. Wiley Blackwell, Chichester, West Sussex, UK, (2015) 222-237.