DOI QR코드

DOI QR Code

Supercapacitor 전극용 최적의 mesoporous carbon 합성을 위한 PVDC-resin 전구체로 부터 CuO를 이용한 화학적 활성화 과정 연구

Study on the chemical activation process from PVDC-resin with CuO agent to synthesize mesoporous carbon for supercapacitor electrodes

  • 전상은 (경북대학교 첨단소재공학부)
  • Sang-Eun Chun (School of Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2024.07.11
  • 심사 : 2024.07.16
  • 발행 : 2024.08.31

초록

PVDC-resin transforms into porous carbon through the removal of heteroatoms during heat treatment. When PVDC-resin mixed with chemical agent undergoes heat treatment, it transforms into porous carbon with a significant surface area. In this study, we aim to produce porous carbon using PVDC-resin as a precursor by mixing it with an inexpensive CuO agent in various ratios (1:1, 1:2) and varying the process temperatures (750℃, 950℃). To utilize the developed porous carbon as electrode for supercapacitors, this study explored the formation of micropores and mesopores during the activation process. The porous characteristics and specific surface area of the synthesized porous carbon were estimated using N2 isotherm. The specific capacitance and rate capability required for supercapacitor electrodes were evaluated through cyclic voltammetry. Experimental results demonstrated that when the precursor and agent were mixed in a 1:2 ratio, a high surface areal carbon with numerous micropores and mesopores was obtained. When the activation was performed at 950℃, no impurities remained from the agent, resulting in high rate performance. The porous carbon synthesized using PVDC-resin and CuO demonstrated high specific surface area and excellent rate capability, indicating its potential as an electrode material for supercapacitors.

키워드

과제정보

이 성과는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1A2C1009922).

참고문헌

  1. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, Journal of Materials Chemistry A, 5 (2017) 12653-12672.  https://doi.org/10.1039/C7TA00863E
  2. Y. Wang, P. Niu, J. Li, S. Wang, L. Li, Recent progress of phosphorus composite anodes for sodium/potassium ion batteries, Energy Storage Materials, 34 (2021) 436-460.  https://doi.org/10.1016/j.ensm.2020.10.003
  3. S. Dutta, A. Bhaumik, K.C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications, Energy & Environmental Science, 7 (2014) 3574-3592.  https://doi.org/10.1039/C4EE01075B
  4. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937-950.  https://doi.org/10.1016/S0008-6223(00)00183-4
  5. T.J. Bandosz, J. Jagiello, K. Putyera, J.A. Schwarz, Sieving properties of carbons obtained by template carbonization of polyfurfuryl alcohol within mineral matrices, Langmuir, 11 (1995) 3964-3969.  https://doi.org/10.1021/la00010a056
  6. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Advances, 3 (2013) 13059-13084.  https://doi.org/10.1039/c3ra23466e
  7. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, a review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44 (2015) 7484-7539.  https://doi.org/10.1039/C5CS00303B
  8. J.A. Macia-Agullo, B.C. Moore, D. Cazorla-Amoros, A. Linares-Solano, Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation, Carbon, 42 (2004) 1367-1370.  https://doi.org/10.1016/j.carbon.2004.01.013
  9. A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review, Renewable and Sustainable Energy Reviews, 52 (2015) 1282-1293.  https://doi.org/10.1016/j.rser.2015.07.129
  10. L. Weinstein, R. Dash, Supercapacitor carbons, Materials Today, 16 (2013) 356-357.  https://doi.org/10.1016/j.mattod.2013.09.005
  11. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production-a review, Renewable and Sustainable Energy Reviews, 11 (2007) 1966-2005.  https://doi.org/10.1016/j.rser.2006.03.013
  12. D. Hulicova-Jurcakova, A.M. Puziy, O.I. Poddubnaya, F. Suarez-Garcia, J.M.D. Tascon, G.Q. Lu, Highly stable performance of supercapacitors from phosphorus-enriched carbons, Journal of the American Chemical Society, 131 (2009) 5026-5027.  https://doi.org/10.1021/ja809265m
  13. Z. Liang, L. Zhang, H. Liu, J. Zeng, J. Zhou, H. Li, H. Xia, Soft-template assisted hydrothermal synthesis of size-tunable, N-doped porous carbon spheres for supercapacitor electrodes, Results in Physics, 12 (2019) 1984-1990.  https://doi.org/10.1016/j.rinp.2019.01.074
  14. N. Diez, G.A. Ferrero, A.B. Fuertes, M. Sevilla, Sustainable salt template-assisted chemical activation for the production of porous carbons with enhanced power handling ability in supercapacitors, Batteries & Supercaps, 2 (2019) 701-711.  https://doi.org/10.1002/batt.201900037
  15. T. Kim, S.H. Yi, S.E. Chun, Electrophoretic deposition of a supercapacitor electrode of activated carbon onto an indium-tin-oxide substrate using ethyl cellulose as a binder, Journal of Materials Science & Technology, 58 (2020) 188-196.  https://doi.org/10.1016/j.jmst.2020.03.072
  16. M. Danish, R. Hashim, M.N.M. Ibrahim, O. Sulaiman, Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood, Journal of Analytical and Applied Pyrolysis, 104 (2013) 418-425.  https://doi.org/10.1016/j.jaap.2013.06.003
  17. J. Bedia, M. Penas-Garzon, A. Gomez-Aviles, J.J. Rodriguez, C. Belver, Review on activated carbons by chemical activation with FeCl3, C, 6 (2020) 21. 
  18. S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance, Journal of Materials Chemistry, 22 (2012) 9884-9889.  https://doi.org/10.1039/c2jm30923h
  19. T. Zhang, W.P. Walawender, L.T. Fan, M. Fan, D. Daugaard, R.C. Brown, Preparation of activated carbon from forest and agricultural residues through CO2 activation, Chemical Engineering Journal, 105 (2004) 53-59.  https://doi.org/10.1016/j.cej.2004.06.011
  20. A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34 (1996) 471-479.  https://doi.org/10.1016/0008-6223(95)00204-9
  21. S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong, A.N. Grace, Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes, Scientific Reports, 9 (2019) 16315. 
  22. F. Caturla, M. Molina-Sabio, F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon, 29 (1991) 999-1007.  https://doi.org/10.1016/0008-6223(91)90179-M
  23. M. Ruiz-Fernandez, M. Alexandre-Franco, C. Fernandez-Gonzalez, V. Gomez-Serrano, Development of activated carbon from vine shoots by physical and chemical activation methods. Some insight into activation mechanisms, Adsorption, 17 (2011) 621-629.  https://doi.org/10.1007/s10450-011-9347-1
  24. B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Materials Chemistry and Physics, 124 (2010) 504- 509.  https://doi.org/10.1016/j.matchemphys.2010.07.002
  25. M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism, Carbon, 41 (2003) 267-275.  https://doi.org/10.1016/S0008-6223(02)00279-8
  26. X. Lin, Y. Liang, Z. Lu, H. Lou, X. Zhang, S. Liu, B. Zheng, R. Liu, R. Fu, D. Wu, Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials, ACS Sustainable Chemistry & Engineering, 5 (2017) 8535-8540.  https://doi.org/10.1021/acssuschemeng.7b02462
  27. C.H. Yang, Q.D. Nguyen, T.H. Chen, A.S. Helal, J. Li, J.K. Chang, Functional group-dependent supercapacitive and aging properties of activated carbon electrodes in organic electrolyte, ACS Sustainable Chemistry & Engineering, 6 (2018) 1208-1214.  https://doi.org/10.1021/acssuschemeng.7b03492
  28. G. Zhou, N.R. Kim, S.E. Chun, W. Lee, M.K. Um, T.W. Chou, M.F. Islam, J.H. Byun, Y. Oh, Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors, Carbon, 130 (2018) 137-144.  https://doi.org/10.1016/j.carbon.2017.12.123
  29. C. Ma, Y. Li, J. Shi, Y. Song, L. Liu, High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching, Chemical Engineering Journal, 249 (2014) 216-225.  https://doi.org/10.1016/j.cej.2014.03.083
  30. X. Han, Z.H. Huang, F. Meng, B. Jia, T. Ma, Redox-etching induced porous carbon cloth with pseudocapacitive oxygenic groups for flexible symmetric supercapacitor, Journal of Energy Chemistry, 64 (2022) 136-143.  https://doi.org/10.1016/j.jechem.2021.04.035
  31. F.C. Wu, R.L. Tseng, Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water, Journal of Colloid and Interface Science, 294 (2006) 21-30.  https://doi.org/10.1016/j.jcis.2005.06.084
  32. L. Liu, H. Yin, W. Guo, B. Jia, H. Jiang, High gravimetric capacitance MXene supercapacitor electrode based on etched Ti3C2Tx by chemical etching, Advanced Engineering Materials, 25 (2023) 2201425. 
  33. I.S. Son, Y. Oh, S.H. Yi, W.B. Im, S.E. Chun, Facile fabrication of mesoporous carbon from mixed polymer precursor of PVDF and PTFE for high-power supercapacitors, Carbon, 159 (2020) 283-291.  https://doi.org/10.1016/j.carbon.2019.12.049
  34. S. Sharma, S.E. Chun, New high-yield method for the production of activated carbon via hydrothermal carbonization (HTC) processing of carbohydrates, Journal of Electrochemical Science and Technology, 10 (2019) 387-393.  https://doi.org/10.33961/jecst.2019.00059
  35. D. Kim, S. Yun, S. Chun, J. Choi, Porous carbon networks with nanosphere-interconnected structure via 3-aminophenol-formaldehyde polymerization, Macromolecular Research, 26 (2018) 317-321.  https://doi.org/10.1007/s13233-018-6041-z
  36. B. Hwang, S.H. Yi, S.E. Chun, Dual-role of ZnO as a templating and activating agent to derive porous carbon from polyvinylidene chloride (PVDC) resin, Chemical Engineering Journal, 422 (2021) 130047. 
  37. J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, P. Pfeifer, Nanospace engineering of KOH activated carbon, Nanotechnology, 23 (2012) 015401. 
  38. K.S. Lee, C.W. Park, J.D. Kim, Synthesis of ZnO/activated carbon with high surface area for supercapacitor electrodes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555 (2018) 482-490.  https://doi.org/10.1016/j.colsurfa.2018.06.077
  39. J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, G. Xing, Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4, Applied Surface Science, 320 (2014) 674-680.  https://doi.org/10.1016/j.apsusc.2014.08.178
  40. J. Hur, B. Hwang, L. Hong, S.J. Yoo, S.E. Chun, Fabrication of hydrophilic porous carbon from polyvinylidene chloride-resin via synergetic activation of ZnO and tetrahydrofuran for aqueous supercapacitors, Surfaces and Interfaces, 40 (2023) 103127. 
  41. S.E. Chun, J.F. Whitacre, Formation of micro/mesopores during chemical activation in tailor-made nongraphitic carbons, Microporous and Mesoporous Materials, 251 (2017) 34-41.  https://doi.org/10.1016/j.micromeso.2017.05.038
  42. J.Y. Park, J. Hur, S.H. Yi, S.E. Chun, Porous carbon from polyvinylidene chloride or polyvinylidene fluoride with ZnO, Mg(OH)2, and KOH for supercapacitor, Carbon Letters, 34 (2024) 677-690. 
  43. S.E. Chun, Charge storage behavior of the carbons derived from polyvinylidene chloride-resin and polyvinylidene fluoride in different pH electrolytes, Composites Research, 35 (2022) 394-401.  https://doi.org/10.7234/COMPOSRES.2022.35.6.394
  44. M. Endo, Y.J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara, M.S. Dresselhaus, Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte, Journal of the Electrochemical Society, 148 (2001) A1135. 
  45. B. Xu, F. Wu, S. Chen, Z. Zhou, G. Cao, Y. Yang, High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs, Electrochimica Acta, 54 (2009) 2185-2189.  https://doi.org/10.1016/j.electacta.2008.10.032
  46. M. Endo, Y.J. Kim, K. Ishii, T. Inoue, T. Nomura, N. Miyashita, M.S. Dresselhaus, Heat-treatment retention time dependence of polyvinylidenechloride-based carbons on their application to electric double-layer capacitors, Journal of Materials Research, 18 (2003) 693-701.  https://doi.org/10.1557/JMR.2003.0093
  47. B. Xu, F. Wu, S. Chen, G. Cao, Z. Zhou, A simple method for preparing porous carbon by PVDC pyrolysis, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316 (2008) 85-88.  https://doi.org/10.1016/j.colsurfa.2007.08.042
  48. J.A. Conesa, A. Fullana, R. Font, De novo synthesis of PCDD/F by thermogravimetry, Environmental Science & Technology, 36 (2002) 263-269.  https://doi.org/10.1021/es015545n
  49. G. Zhang, H. Luo, H. Li, L. Wang, B. Han, H. Zhang, Y. Li, Z. Chang, Y. Kuang, X. Sun, ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst, Nano Energy, 26 (2016) 241-247.  https://doi.org/10.1016/j.nanoen.2016.05.029
  50. S.M. Hong, S.W. Choi, S.H. Kim, K.B. Lee, Porous carbon based on polyvinylidene fluoride: Enhancement of CO2 adsorption by physical activation, Carbon, 99 (2016) 354-360.  https://doi.org/10.1016/j.carbon.2015.12.012
  51. S.E. Chun, J. Choi, J.F. Whitacre, Tailoring the porous texture of activated carbons by CO2 reactivation to produce electrodes for organic electrolyte-based EDLCs, Ionics, 24 (2018) 2055-2061.  https://doi.org/10.1007/s11581-018-2447-0
  52. Y. Tian, C. Xiao, J. Yin, W. Zhang, J. Bao, H. Lin, H. Lu, Hierarchical porous carbon prepared through sustainable CuCl2 activation of rice husk for high-performance supercapacitors, ChemistrySelect, 4 (2019) 2314-2319.  https://doi.org/10.1002/slct.201804002
  53. B. Liu, J. Gu, J. Zhou, High surface area rice husk-based activated carbon prepared by chemical activation with ZnCl2-CuCl2 composite activator, Environmental Progress & Sustainable Energy, 35 (2016) 133-140.  https://doi.org/10.1002/ep.12215
  54. B. Hwang, S.E. Chun, Fabrication of mesoporous carbon from polyvinylidene chloride (PVDC)-resin precursor with Mg(OH)2 template for supercapacitor electrode, Journal of the Korean Institute of Surface Engineering, 52 (2019) 326-333.  https://doi.org/10.5695/JKISE.2019.52.6.326
  55. I.S. Son, B. Hwang, S.E. Chun, Synthesis of mesoporous carbon from PVDF and PTFE via defluorination of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), Korean Journal of Metals and Materials, 59 (2021) 336-345.  https://doi.org/10.3365/KJMM.2021.59.5.336
  56. I.S. Son, S.H. Yi, S.E. Chun, Synthesis of hydrophilic hierarchical carbon via autonomous SiO2 etching by fluorinated polymers for aqueous supercapacitor, International Journal of Energy Research, 45 (2021) 13836-13850. https://doi.org/10.1002/er.6717