참고문헌
- J.M. Lane, H.S. Sandhu, Current approaches to experimental bone grafting, Orthopedic Clinics of North America, 18 (1987) 213-225. https://doi.org/10.1016/S0030-5898(20)30385-0
- S.D. Boden, D.R. Sumner, Biologic factors affecting spinal fusion and bone regeneration, Spine, 20 (1995) 113S.
- S.N. Khan, F. Cammisa, H.S. Sandhu, D.P. Diwan, K.L. Girardi, D.R. Lane, K.S. Khan, The biology of bone grafting, JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 13 (2005) 77-86. https://doi.org/10.5435/00124635-200501000-00010
- M.A. Velasco, C.A. Narvaez-Tovar, D.A. Garzon-Alvarado, Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering, Biomedical Research International, (2015) 729076.
- J.J. Klawitter, J.G. Bagwell, A.M. Weinstein, B.W. Sauer, J.R. Pruitt, An evaluation of bone growth into porous high density polyethylene, Journal of Biomedical Materials Research, (1976) 311-323.
- A.H. Schmidt, Autologous bone graft: is it still the gold standard?, Injury, 52 (2021) S18-S22. https://doi.org/10.1016/j.injury.2021.01.043
- G.F. Rogers, A.K. Greene, Autogenous bone graft: basic science and clinical implications, Journal of Craniofacial Surgery, 23 (2012) 323-327.
- H.Y. Park, S.I. Kim, Y.H. Kim, Biomaterials and futures for bone regeneration, Journal of the Korean Orthopaedic Association, 57 (2022) 447-456. https://doi.org/10.4055/jkoa.2022.57.6.447
- J. Jeong, J.H. Kim, J.H. Shim, J.H. Hwang, W.H. Heo, Bioactive calcium phosphate materials and applications in bone regeneration, Biomaterials Research, 23 (2019) 4.
- Y. Fillingham, J. Jacobs, Bone grafts and their substitutes, The Bone & Joint Journal, 98 (2016) 6-9.
- E.M. Younger, M.W. Chapman, Morbidity at bone graft donor sites, Journal of Orthopaedic Trauma, 3 (1989) 192-195. https://doi.org/10.1097/00005131-198909000-00002
- B. Mahardawi, S.H. Kim, C.H. Kim, H.S. Kim, Autogenous tooth bone graft material prepared chairside and its clinical applications: a systematic review, International Journal of Oral and Maxillofacial Surgery, 52 (2023) 132-141.
- G.W. Kim, S.K. Lee, J.Y. Kim, J.Y. Seo, S.I. Park, Analysis of crystalline structure of autogenous tooth bone graft material: X-ray diffraction analysis, Journal of the Korean Association of Oral and Maxillofacial Surgeons, 37 (2011) 225-228.
- S.H. Lee, Low crystalline hydroxyl carbonate apatite, The Journal of the Korean Dental Association, 44 (2006) 524-533.
- Y.K. Kim, J.Y. Lee, Y.S. Kim, J.W. Yun, Analysis of the inorganic component of autogenous tooth bone graft material, Journal of Nanoscience and Nanotechnology, 11 (2011) 7442-7445. https://doi.org/10.1166/jnn.2011.4857
- Centers for Disease Control (CDC), Transmission of HIV through bone transplantation: case report and public health recommendations, MMWR. Morbidity and Mortality Weekly Report, 37 (1988) 597-599.
- R. Murugan, K.P. Rao, T.S. Sampath Kumar, Heat-deproteinated xenogeneic bone from slaughterhouse waste: physico-chemical properties, Bulletin of Materials Science, 26 (2003) 523- 528. https://doi.org/10.1007/BF02707351
- A. Figueiredo, M.S. Brito, J.A. Carvalho, R.L. Resende, F.M. Passos, A.C. Borges, Comparison of a xenogeneic and an alloplastic material used in dental implants in terms of physicochemical characteristics and in vivo inflammatory response, Materials Science and Engineering: C, 33 (2013) 3506-3518. https://doi.org/10.1016/j.msec.2013.04.047
- C. Delloye, M. Cornu, D. Druez, O. Barbier, Bone allografts: what they can offer and what they cannot, The Journal of Bone & Joint Surgery British Volume, 89 (2007) 574-580.
- J.F. Trotter, Transmission of hepatitis C by implantation of a processed bone graft: a case report, The Journal of Bone and Joint Surgery, 85 (2003) 2215-2217.
- A. Pruss, R. Ottinger, M. Keler, J. Maier, R. Hepner, Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses, Biologicals, 30 (2002) 125-133. https://doi.org/10.1006/biol.2002.0326
- T. Boyce, J. Edwards, N. Scarborough, Allograft bone: the influence of processing on safety and performance, Orthopedic Clinics, 30 (1999) 571-581.
- C.A. DePaula, R.J. Phipps, A.W. Goldenberg, R.G. Tamer, Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties, Cell and Tissue Banking, 6 (2005) 287-298. https://doi.org/10.1007/s10561-005-3148-2
- M.W. Wolfe, S.L. Salkeld, S.D. Cook, Bone morphogenetic proteins in the treatment of non-unions and bone defects: historical perspective and current knowledge, The University of Pennsylvania Orthopaedic Journal, 12 (1999) 1-6.
- G. Villatte, P. Bassel, B. Nguyen, Evaluation of the biomechanical and structural properties of bone allografts treated with a new cleaning process, World Journal of Advanced Research and Reviews, 14 (2022) 608-616. https://doi.org/10.30574/wjarr.2022.14.3.0614
- A. Rasch, K. Wolf, C. Krause, U. Nolte, F. Langer, Evaluation of bone allograft processing methods: impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality, PLoS One, 14 (2019) e0218404.
- D.K. Kim, H.J. Jeong, J.Y. Park, J.H. Lee, Y.J. Kim, Comparison of a synthetic bone substitute composed of carbonated apatite with an anorganic bovine xenograft in particulate forms in a canine maxillary augmentation model, Clinical Oral Implants Research, 21 (2010) 1334-1344. https://doi.org/10.1111/j.1600-0501.2010.01953.x
- I.A. Karampas, C.G. Kontoyannis, Characterization of calcium phosphates mixtures, Vibrational Spectroscopy, 64 (2013) 126-133. https://doi.org/10.1016/j.vibspec.2012.11.003
- S.T. Kao, D.D. Scott, A review of bone substitutes, Oral and Maxillofacial Surgery Clinics of North America, 19 (2007) 513-521. https://doi.org/10.1016/j.coms.2007.06.002
- B. Long, S. Liu, X. Zhang, L. Wang, Evaluation of a novel reconstituted bone xenograft using processed bovine cancellous bone in combination with purified bovine bone morphogenetic protein, Xenotransplantation, 19 (2012) 122-132. https://doi.org/10.1111/j.1399-3089.2012.00694.x
- N.N. Pathak, D.K. Pathak, P.D. Sharma, Mineral composition of antlers of three deer species reared in captivity, Small Ruminant Research, 42 (2001) 61-65.
- B.T. Bezerra, J.C. de Almeida, R.C. Lopes, R.J.L. Lima, Autogenous bone graft versus bovine bone graft in association with platelet-rich plasma for the reconstruction of alveolar clefts: a pilot study, International Journal of Oral and Maxillofacial Surgery, 52 (2023) 132-141.
- A. A. Qabbani, H.G. Wang, J.B. Lin, Evaluation of decellularization process for developing osteogenic bovine cancellous bone scaffolds in-vitro, PLoS One, 18 (2023) e0283922.
- M.L. Wong, L.G. Griffiths, Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization, Acta Biomaterialia, 10 (2014) 1806-1816. https://doi.org/10.1016/j.actbio.2014.01.028
- D.W. Hutmacher, M. Sittinger, M.V. Risbud, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, Journal of Tissue Engineering and Regenerative Medicine, 1 (2007) 245-260. https://doi.org/10.1002/term.24
- T. Jensen, L. Schou, L. Svendsen, H. Forman, Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals: a systematic review, International Journal of Oral and Maxillofacial Surgery, 41 (2012) 114-120. https://doi.org/10.1016/j.ijom.2011.08.010
- R. Manfro, M.J. Conz, G.T. Moura, F.A. Ponzoni, R.P. Santos, A.A. Gruber, Comparative, histological and histomorphometric analysis of three anorganic bovine xenogenous bone substitutes: Bio-Oss, Bone-Fill and Gen-Ox anorganic, Journal of Maxillofacial and Oral Surgery, 13 (2014) 464-470. https://doi.org/10.1007/s12663-013-0554-z
- Y. Gao, X. Deng, W. Lin, H. Zhong, Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone, Journal of Materials Science: Materials in Medicine, 17 (2006) 815-823. https://doi.org/10.1007/s10856-006-9840-3
- M.P. Ramirez Fernandez, M.A. de Souza, F.J. Montoya, C.H.L. de Vasconcelos, SEM-EDX study of the degradation process of two xenograft materials used in sinus lift procedures, Materials, 10 (2017) 542.
- P. Habibovic, M. C. Kruyt, M. V. Juhl, S. Clyens, R. Martinetti, L. Dolcini, N. Theilgaard, C. A. van Blitterswijk, Comparative in vivo study of six hydroxyapatite-based bone graft substitutes, Journal of Orthopaedic Research, 26 (2008) 1363-1370.
- H.Y. Chang, W.H. Tuan, P.L. Lai, Biphasic ceramic bone graft with biphasic degradation rates, Materials Science and Engineering: C, 118 (2021) 111421.
- R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clinical Orthopaedics and Related Research, 395 (2002) 81-98. https://doi.org/10.1097/00003086-200202000-00009
- R. Detsch, U. Mayr, B. Ziegler, F. Moser, D. Hofmann, K. Schaefer, The resorption of nanocrystalline calcium phosphates by osteoclast-like cells, Acta Biomaterialia, 6 (2010) 3223-3233. https://doi.org/10.1016/j.actbio.2010.03.003
- A. Ogose, K. Hotta, H. Kawashima, T. Tokunaga, T. Endo, H. Umezu, H. Ito, Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72 (2005) 94-101.
- J. Kim, S. Kim, I. Song, Biomimetic octacalcium phosphate bone has superior bone regeneration ability compared to xenogeneic or synthetic bone, Materials, 14 (2021) 5300.
- R.C. Lopes, R.S. Silva, G.R. Pereira, F.A. Almeida, Bone-bioglass graft-an alternative to improve the osseointegration, Processing and Application of Ceramics, 16 (2022) 230-236. https://doi.org/10.2298/PAC2203230L
- Y. Ling, H.J. Wang, S.P. Zhang, Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process, Regenerative Biomaterials, 7 (2020) 443-451. https://doi.org/10.1093/rb/rbaa024
- R.E. Unger, A. Sartoris, F. Boschetti, M. Steimberg, M.V. de Cilla, C. Colombo, M. Santin, In vivo biocompatibility investigation of an injectable calcium carbonate (vaterite) as a bone substitute including compositional analysis via SEM-EDX technology, International Journal of Molecular Sciences, 23 (2022) 1196.
- V.S. Komlev, E.V. Sergeeva, O.M. Barinov, Bioactivity and effect of bone formation for octacalcium phosphate ceramics, Octacalcium Phosphate Biomaterials, Woodhead Publishing (2020) 85-119.
- E. Oprita, G.D. Perlea, A.L. Antonov, In vitro behaviour of osteoblast cells seeded into a COL/β-TCP composite scaffold, Open Life Sciences, 3 (2008) 31-37. https://doi.org/10.2478/s11535-007-0047-5
- X. Zhang, H. Li, J. Liu, X. Zhu, Restoration of critical-sized defects in the rabbit mandible using autologous bone marrow stromal cells hybridized with nano-β-tricalcium phosphate/collagen scaffolds, Journal of Nanomaterials, 2013 (2013) 913438.
- J.E. Mate-Sanchez de Val, F. Monje, J.M.C. Sola-Ruiz, A. Balara, F.G. Giner-Tarrida, Comparison of three hydroxyapatite/β-tricalcium phosphate/collagen ceramic scaffolds: an in vivo study, Journal of Biomedical Materials Research Part A, 102 (2014) 1037-1046. https://doi.org/10.1002/jbm.a.34785
- M. Ebrahimi, M. Kazemzadeh-Narbat, S. Paul, K. Roy, R. Ghavami, H. Zhang, A.S. Khademhosseini, Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios, Journal of Biomedical Materials Research Part A, 100 (2012) 2260-2268.
- G. Jain, D. Blaauw, S. Chang, A comparative study of two bone graft substitutes-InterOss® Collagen and OCS-B Collagen®, Journal of Functional Biomaterials, 13 (2022) 28.
- E. Solheim, Growth factors in bone, International Orthopaedics, 22 (1998) 410-416. https://doi.org/10.1007/s002640050290
- I. E. Bialy, W. Jiskoot, M.R. Nejadnik, Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration, Pharmaceutical Research, 34 (2017) 1152-1170. https://doi.org/10.1007/s11095-017-2147-x
- W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review, Bioactive Materials, 2 (2017) 224-247.
- M. Pfeiffenberger, J. Schroter, M. Liedert, F. Jakob, T. Bruckner, M. Amling, F. Jakob, Fracture healing research-shift towards in vitro modeling?, Biomedicines, 9 (2021) 748.
- K.L. Ong, K.K. Villarraga, J.P. Lau, C.L. Carreon, M. Kurtz, Off-label use of bone morphogenetic proteins in the United States using administrative data, Spine, 35 (2010) 1794-1800. https://doi.org/10.1097/BRS.0b013e3181ecf6e4
- V. Sreekumar, A. Kumar, M.J. Rosa, BMP9 a possible alternative drug for the recently withdrawn BMP7? New perspectives for (re-)implementation by personalized medicine, Archives of Toxicology, 91 (2017) 1353-1366. https://doi.org/10.1007/s00204-016-1796-6
- Y. Zhang, J. Li, S. Wang, B. Liu, Addition of a synthetically fabricated osteoinductive biphasic calcium phosphate bone graft to BMP2 improves new bone formation, Clinical Implant Dentistry and Related Research, 18 (2016) 1238-1247. https://doi.org/10.1111/cid.12384
- M.A. Miranda, M.S. Moon, Treatment strategy for nonunions and malunions, Surgical Treatment of Orthopaedic Trauma, 1 (2007) 77-100.
- B. M. Wheatley, S. J. Yang, J. E. Urban, C. B. Hsu, J. C. Jacobs, J. E. Nerlich, Effect of NSAIDs on bone healing rates: a meta-analysis, JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 27 (2019) e330-e336.
- L. C. Gerstenfeld, W. J. Sarada, J. V. Charles, M. P. Stephen, R. T. William, Impaired fracture healing in the absence of TNF-α signaling: the role of TNF-α in endochondral cartilage resorption, Journal of Bone and Mineral Research, 18 (2003) 1584-1592.
- S. Recknagel, A. Bindl, K. Kurz, D. Wehner, D. Ehrnthaller, R. J. Claes, M. R. Schuetz, Systemic inflammation induced by a thoracic trauma alters the cellular composition of the early fracture callus, Journal of Trauma and Acute Care Surgery, 74 (2013) 531-537. https://doi.org/10.1097/TA.0b013e318278956d
- F. Batool, I. Struillou, F. Petit, B. Bugueno, P. Richard, C. Bruneau, Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration, Journal of Tissue Engineering, 12 (2021) 20417314211041428.
- G. Zhou, B. Zhu, F. Jing, Y. Qiu, Y. Weng, Reducing the inflammatory responses of biomaterials by surface modification with glycosaminoglycan multilayers, Journal of Biomedical Materials Research Part A, 104 (2016) 493-502. https://doi.org/10.1002/jbm.a.35587
- H. Al-Khoury, M. T. Geoghegan, J. T. El-Sayed, M. A. Desmond, T. K. Thomas, Anti-inflammatory surface coatings based on polyelectrolyte multilayers of heparin and polycationic nanoparticles of naproxen-bearing polymeric drugs, Biomacromolecules, 20 (2019) 4015-4025. https://doi.org/10.1021/acs.biomac.9b01098
- T. Xu, K. Zhao, B. Cheng, Development of the biomaterials technology for the infection resistance, Current Pharmaceutical Design, 24 (2018) 886-895.
- C. Gao, Z. Feng, L. Zhao, Q. Chen, X. Qiu, Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance, Scientific Reports, 4 (2014) 4712.
- S. Y. Park, J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, J. S. Nam, Enhanced differentiation of human neural stem cells into neurons on graphene, Advanced Materials, 23 (2011) H263.
- X. Shi, Y. Tian, Y. Wang, Z. Wang, Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states, Advanced Functional Materials, 22 (2012) 751-759. https://doi.org/10.1002/adfm.201102305
- S. Kim, H. Kuang, A. Muller, L. Senyo, Graphene-biomineral hybrid materials, Advanced Materials, 23 (2011) 2009-2014. https://doi.org/10.1002/adma.201100010
- P. G. Coelho, J. T. Granjeiro, S. J. Larsson, H. O. Hayashi, Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces, Journal of Biomedical Materials Research Part A, 100 (2012) 1901-1906. https://doi.org/10.1002/jbm.a.34127
- K. Duske, S. Koban, J. F. Kindel, W. Schroder, N. Nebe, Atmospheric plasma enhances wettability and cell spreading on dental implant metals, Journal of Clinical Periodontology, 39 (2012) 400-407. https://doi.org/10.1111/j.1600-051X.2012.01853.x
- B. D. Boyan, E. M. Lotz, Z. Schwartz, Roughness and hydrophilicity as osteogenic biomimetic surface properties, Tissue Engineering Part A, 23 (2017) 1479-1489. https://doi.org/10.1089/ten.tea.2017.0048
- L. Canullo, F. Menini, G. Schwarz, M. Tobar, M. P. Heinemann, Effects of argon plasma treatment on the osteoconductivity of bone grafting materials, Clinical Oral Investigations, 24 (2020) 2611-2623. https://doi.org/10.1007/s00784-019-03119-0
- P. T. Vu, J. P. Conroy, A. M. Yousefi, The effect of argon plasma surface treatment on poly (lactic-co-glycolic acid)/collagen-based biomaterials for bone tissue engineering, Biomimetics, 7 (2022) 218.
- G. Daculsi, A. Passuti, J. Martin, J. L. Deudon, M. Legeros, A. Raher, Transformation of biphasic calcium phosphate ceramics invivo : ultrastructural and physicochemical characterization, Journal of Biomedical Materials Research, 23 (1989) 883-894.
- G. Daculsi, J. M. Bouler, A. LeGeros, M. A. LeGeros, B. Weiss, Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics, Calcified Tissue International, 46 (1990) 20-27.
- S. Bose, S. Roy, A. Bandyopadhyay, Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics, Trends in Biotechnology, 31 (2013) 594-605.
- S. Minardi, G. Corradetti, S. Taraballi, A. P. Overby, G. V. Messina, R. Tasciotti, Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation, Biomaterials, 62 (2015) 128-137. https://doi.org/10.1016/j.biomaterials.2015.05.011
- L. Stipniece, R. Salma-Ancane, M. Berzina-Cimdina, Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation, Ceramics International, 47 (2021) 3368-3379.
- Z. Geng, Y. Wang, Y. Zhang, J. Qi, Nanosized strontium substituted hydroxyapatite prepared from egg shell for enhanced biological properties, Journal of Biomaterials Applications, 32 (2018) 896-905. https://doi.org/10.1177/0885328217748124
- S. Chen, H. S. Guo, J. M. S. Lee, S. W. Tsai, Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration, Journal of Biomedical Materials Research Part A, 107 (2019) 2512-2521. https://doi.org/10.1002/jbm.a.36757
- L. Bauer, G. Zlotnikov, J. A. Ziegelmeier, A. Muller, Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells, Journal of Materials Science, 56 (2021) 3947-3969.
- K. H. Park, Y. K. Jang, K. J. Jang, J. J. Kim, S. H. Lee, Zinc promotes osteoblast differentiation in human mesenchymal stem cells via activation of the cAMP-PKA-CREB signaling pathway, Stem Cells and Development, 27 (2018) 1125-1135. https://doi.org/10.1089/scd.2018.0023
- E. A. Ofudje, O. A. Akinbile, B. O. Olanrewaju, Synthesis and characterization of Zn-Doped hydroxyapatite: scaffold application, antibacterial and bioactivity studies, Heliyon, 5 (2019).
- K. Matsunaga, H. Murata, Formation energies of substitutional sodium and potassium in hydroxyapatite, Materials Transactions, 50 (2009) 1041-1045.
- Y. Sugiura, Y. Makita, Sodium induces octacalcium phosphate formation and enhances its layer structure by affecting the hydrous layer phosphate, Crystal Growth & Design, 18 (2018) 6165-6171. https://doi.org/10.1021/acs.cgd.8b01030
- A. Fakharzadeh, F. Mohammadi, M. Rahimzadeh, K. Javad, Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method, Ceramics International, 43 (2017) 12588-12598.
- C. Shi, Y. L. Zhang, W. P. Xiao, G. Zhang, X. Y. Liu, Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity, Materials Science and Engineering: C, 55 (2015) 497-505. https://doi.org/10.1016/j.msec.2015.05.078
- M. Germaini, J. C. Orsola, G. H. Pineda, Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration, Biomedical Materials, 12 (2017) 035008.
- T. Kasai, R. Sekine, K. Kawai, S. Okada, S. Mizuno, Bone tissue engineering using porous carbonate apatite and bone marrow cells, Journal of Craniofacial Surgery, 21 (2010) 473-478. https://doi.org/10.1097/SCS.0b013e3181cfea6d
- S. Hesaraki, A. Sharifi, M. Zamanian, S. B. Salahshoor, Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102 (2014) 108-118. https://doi.org/10.1002/jbm.b.32987
- K. Pajor, L. Pajchel, J. Kolmas, Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review, Materials, 12 (2019) 2683.
- V. Uskokovic, M. A. Iyer, V. M. Wu, One ion to rule them all: the combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite, Journal of Materials Chemistry B, 5 (2017) 1430-1445. https://doi.org/10.1039/C6TB03387C
- K.L. Pang, K.Y. Chin, Emerging anticancer potentials of selenium on osteosarcoma, International Journal of Molecular Sciences, 20 (2019) 5318.
- A. Ressler, Z. Manic, I. Lukic, B. Petrovic, V. Panic, M. Jovanovic, Ionic substituted hydroxyapatite for bone regeneration applications: A review, Open Ceramics, 6 (2021) 100122.
- H. S. Kim, S. G. Kumbar, S. P. Nukavarapu, Biomaterial-directed cell behavior for tissue engineering, Current Opinion in Biomedical Engineering, 17 (2021) 100260.
- C. J. Wilson, R. E. Clegg, M. T. Leavesley, M. J. Pearcy, Mediation of biomaterial-cell interactions by adsorbed proteins: a review, Tissue Engineering, 11 (2005) 1-18.
- B. Geiger, A. Bershadsky, R. Pankov, K. M. Yamada, Transmembrane crosstalk between the extracellular matrix and the cytoskeleton, Nature Reviews Molecular Cell Biology, 2 (2001) 793-805. https://doi.org/10.1038/35099066
- T. J. Webster, R. W. Siegel, R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics, Journal of Biomedical Materials Research, 51 (2000) 475-483.
- Y. Tian, B. Zhou, L. M. Park, C. F. Sun, Z. Wang, Surface energy-mediated fibronectin adsorption and osteoblast responses on nanostructured diamond, Journal of Materials Science & Technology, 35 (2019) 817-823. https://doi.org/10.1016/j.jmst.2018.11.009
- A. B. Faia-Torres, M. M. Charnley, D. Goren, R. G. Darga, G. M. Neff, Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients, Biomaterials, 35 (2014) 9023-9032. https://doi.org/10.1016/j.biomaterials.2014.07.015
- M. M. Ouberai, K. Xu, M. E. Welland, Effect of the interplay between protein and surface on the properties of adsorbed protein layers, Biomaterials, 35 (2014) 6157-6163. https://doi.org/10.1016/j.biomaterials.2014.04.012
- R. M. Visalakshan, A. Pham, S. Jin, M. T. Clark, M. S. Ranganathan, A. L. Wood, Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses, ACS Applied Materials & Interfaces, 11 (2019) 27615-27623. https://doi.org/10.1021/acsami.9b09900
- K. M. Hotchkiss, N. M. Clark, R. Olivares-Navarrete, Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations, Biomaterials, 182 (2018) 202-215. https://doi.org/10.1016/j.biomaterials.2018.08.029
- P. Cernochova, D. Tomankova, T. Hradilova, A. Nebesarova, R. Peterkova, A. Martynkova, Cell type specific adhesion to surfaces functionalised by amine plasma polymers, Scientific Reports, 10 (2020) 1-14.
- S. Guo, K. Liang, S. Hong, Tailoring polyelectrolyte architecture to promote cell growth and inhibit bacterial adhesion, ACS Applied Materials & Interfaces, 10 (2018) 7882-7891. https://doi.org/10.1021/acsami.8b00666
- E. Mariani, A. Lisignoli, R. Borzi, B. Pulsatelli, Biomaterials: foreign bodies or tuners for the immune response?, International Journal of Molecular Sciences, 20 (2019) 636.
- J. N. Barbosa, A. C. Martins, R. F. Gadelha, The influence of functional groups of self-assembled monolayers on fibrous capsule formation and cell recruitment, Journal of Biomedical Materials Research Part A, 76 (2006) 737-743. https://doi.org/10.1002/jbm.a.30602
- S. Kamath, H. Bhushan, A. Chakrabarti, S. R. Murthy, S. Basu, Surface chemistry influences implant-mediated host tissue responses, Journal of Biomedical Materials Research Part A, 86 (2008) 617-626.
- L. R. Jaidev, K. Chatterjee, Surface functionalization of 3D printed polymer scaffolds to augment stem cell response, Materials & Design, 161 (2019) 44-54. https://doi.org/10.1016/j.matdes.2018.11.018
- I. Beitlitum, H. Magdassi, T. George, E. Gazit, A. T. Hoffman, A novel micro-CT analysis for evaluating the regenerative potential of bone augmentation xenografts in rabbit calvarias, Scientific Reports, 14 (2024) 4321.
- S. J. Schambach, J. H. Bag, J. C. Lutz, M. Stark, C. G. Persing, Application of micro-CT in small animal imaging, Methods, 50 (2010) 2-13. https://doi.org/10.1016/j.ymeth.2009.08.007
- H. M. Jo, D. J. Kim, H. T. Seo, Application of modified porcine xenograft by collagen coating in the veterinary field: pre-clinical and clinical evaluations, Frontiers in Veterinary Science, 11 (2024) 1373099.
- M. M. Figueiredo, J. A. F. Gamelas, A. G. Martins, Characterization of bone and bone-based graft materials using FTIR spectroscopy, Infrared Spectroscopy-Life and Biomedical Sciences, (2012) 315-338.
- H. Liu, C. Wei, X. Wu, An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration, Acta Biomaterialia, 4 (2008) 1472-1479. https://doi.org/10.1016/j.actbio.2008.02.025
- K.F. Tseng, H.L. Huang, W.J. Lin, H.Y. Chang, W.S. Lin, H.Y. Chen, Osseointegration potential assessment of bone graft materials loaded with mesenchymal stem cells in peri-implant bone defects, International Journal of Molecular Sciences, 25 (2024) 862.
- I. Beitlitum, H. Magdassi, T. George, E. Gazit, A. T. Hoffman, A novel micro-CT analysis for evaluating the regenerative potential of bone augmentation xenografts in rabbit calvarias, Scientific Reports, 14 (2024) 4321.
- Y. K. Lee, J. H. Choi, K. W. Park, H. Y. Cho, Micro-CT and histomorphometric study of bone regeneration effect with autogenous tooth biomaterial enriched with platelet-rich fibrin in an animal model, Scanning, 2021 (2021) 6656791.
- E. Mazzoni, P. Muraro, A. Coviello, F. Mastracci, D. M. Baldini, Enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by a hybrid hydroxylapatite/collagen scaffold, Frontiers in Cell and Developmental Biology, 8 (2021) 610570.
- A. A. Vu, B. J. Clark, S. J. Kennedy, Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications, Additive Manufacturing, 39 (2021) 101870.
- D. Boyd, J. R. Li, S. H. Thomas, Analysis of γ-irradiated synthetic bone grafts by 29Si MAS-NMR spectroscopy, calorimetry and XRD, Journal of Non-Crystalline Solids, 355 (2009) 2285-2288. https://doi.org/10.1016/j.jnoncrysol.2009.07.014
- B. H. Gowda, K. Srikari, K. Ravishankar, Assessment of inorg-anic and organic components in demineralized tooth graft material, AIP Conference Proceedings, 2274 (2020) 1-4.
- Z. Mladenovic, M. Maletic, T. Schlegel, U. Stern, B. Z. Markovic, Surface characterization of bone graft substitute materials conditioned in cell culture medium, Surface and Interface Analysis, 42 (2010) 452-456.
- K. Hong, Analysis of crystal structure of bone graft material using analyses of X-ray diffraction and scanning electron microscope image, Korean Academy of Preventive Dentistry, 15 (2019) 215-219.
- D. Bizari, K. G. Bogdanov, M. L. Almeida, Development of biphasic hydroxyapatite/dicalcium phosphate dihydrate (DCPD) bone graft using polyurethane foam template: in vitro and in vivo study, Advances in Applied Ceramics, 110 (2011) 417-425.
- J. Zhang, Z. X. Zhao, H. Huang, C. F. Liu, Improving osteogenesis of PLGA/HA porous scaffolds based on dual delivery of BMP-2 and IGF-1 via a polydopamine coating, RSC Advances, 7 (2017) 56732-56742. https://doi.org/10.1039/C7RA12062A
- A. N. Koo, K. H. Kim, H. S. Lee, C. B. Park, Enhanced bone regeneration by porous poly (L-lactide) scaffolds with surface-immobilized nanohydroxyapatite, Macromolecular Research, 18 (2010) 1030-1036.
- P. Danilevicius, K. K. Kucuk, B. T. Uz, The effect of porosity on cell ingrowth in 3D laser-fabricated biodegradable scaffolds for bone regeneration, The European Conference on Lasers and Electro-Optics, Optica Publishing Group (2013).
- M. R. Shah, P. M. Patel, S. K. Bhatt, N. V. Patel, Estimation of drug absorption in antibiotic soaked bone grafts, Indian Journal of Orthopaedics, 50 (2016) 669-676. https://doi.org/10.4103/0019-5413.193486
- P. Mazon, A. Marquina, E. Martinez, R. Garcia, M. J. Esbrit, Enhancing bone tissue regeneration with rGO-coated Si-Ca-P bioceramic scaffold, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 63 (2024) 59-71.
- S. Bottcher, B. Ganss, H. Neuhoff, T. Kaltenbach, An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue, bone, bile and serum, Journal of Pharmaceutical and Biomedical Analysis, 25 (2001) 197-203. https://doi.org/10.1016/S0731-7085(00)00478-7
- E. Verne, M. Bonini, G. Trossarelli, A. Piovani, Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics, Journal of Materials Science: Materials in Medicine, 20 (2009) 75-86. https://doi.org/10.1007/s10856-008-3537-8