DOI QR코드

DOI QR Code

Agent-target Detection Problem Considering Change in Probability of Event Occurrence

사건 발생 확률 변화를 고려한 에이전트-타깃 감지 문제

  • 김광 (조선대학교 경영학부)
  • Received : 2024.07.15
  • Accepted : 2024.08.14
  • Published : 2024.08.30

Abstract

In this study, we address the problem of target detection using multiple agents. Specifically, the detection problem involving mobile agents necessitates additional strategies for path planning. The objective is to maximize the total utility derived from the detection process over a specific period. This detection problem incorporates realistic utility values by considering a stochastic process based on the Poisson process, which accounts for the changing probability of target event occurrence over time. The objective function is nonlinear and is classified as an NP-hard problem. To identify an effective solution within an efficient computation time, this study demonstrates that the objective function possesses the characteristic of submodularity. Using this property, we propose a heuristic algorithm designed to obtain a reasonable strategy with relatively low computational time. The proposed algorithm shows solution performance and the ability to generate solutions within an appropriate computation time through theoretical and experimental results.

본 연구에서는 다중 에이전트를 이용한 타깃 감지 문제를 다루는데, 특히 이동식 에이전트를 활용한 감지 문제는 경로 계획에 대한 전략이 추가로 필요하다. 문제의 목표는 특정 기간 내 감지 프로세스를 통해 총 효용을 극대화할 수 있는 각 에이전트의 경로를 찾는 것인데, 시간에 따라 타깃의 사건 발생 확률이 변하도록 하는 포아송 프로세스(Poisson process) 기반의 확률적 프로세스(stochastic process)를 고려하여 현실적인 효용 값을 반영한다. 본 감지 문제의 목적함수는 비선형(non-linearity)이고, NP-난해(NP-hard) 문제로 표현된다. 효율적인 계산 시간 내에 효과적인 해를 찾기 위해, 본 연구에서는 하위모듈성(submodularity)의 특성을 갖는 목적함수임을 증명하고, 이를 활용해 비교적 낮은 계산 시간으로 합리적인 전략을 얻기 위한 휴리스틱 알고리즘을 제안한다. 제안한 알고리즘은 해의 성능과 적절한 계산 시간 내에 해를 도출할 수 있다는 측면에서 우수한 알고리즘임을 이론 및 실험적으로 제시한다.

Keywords

Acknowledgement

이 논문은 2024학년도 조선대학교 학술연구비의 지원을 받아 연구되었음.

References

  1. Alotaibi, K. A., Rosenberger, J. M., Mattingly, S. P., Punugu, R. K. and Visoldilokpun, S. (2018). Unmanned Aerial Vehicle Routing in the Presence of Threats, Computers and Industrial Engineering, 115, 190-205. https://doi.org/10.1016/j.cie.2017.10.030
  2. Carron, A., Todescato, M., Carli, R., Schenato, L. and Pillonetto, G. (2015, July). Multi-agents Adaptive Estimation and Coverage Control using Gaussian Regression, In 2015 European Control Conference (ECC) (pp. 2490-2495). IEEE.
  3. Chen, B., Cheng, H. H. and Palen, J. (2009). Integrating Mobile Agent Technology with Multi-agent Systems for Distributed Traffic Detection and Management Systems, Transportation Research P art C: Emerging Technologies, 17(1), 1-10. https://doi.org/10.1016/j.trc.2008.04.003
  4. Harwin, S. and Lucieer, A. (2012). Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-view Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery, Remote Sensing, 4(6), 1573-1599. https://doi.org/10.3390/rs4061573
  5. Herzog, R., Riedel, I. and Ucinski, D. (2018) Optimal Sensor Placement for Joint Parameter and State Estimation Problems in Large-scale Dynamical Systems with Applications to Thermo-mechanics, Optimization and Engineering, 19, 591-627. https://doi.org/10.1007/s11081-018-9391-8
  6. Huang, L., Qu, H. and Zuo, L. (2018). Multi-type UAVs Cooperative Task Allocation under Resource Constraints, IEEE Access, 6, 17841-17850. https://doi.org/10.1109/ACCESS.2018.2818733
  7. Ihler, A., Hutchins, J. and Smyth, P. (2006, August). Adaptive Event Detection with Time-varying Poisson Processes, In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 207-216).
  8. Jamil, M. S., Jamil, M. A., Mazhar, A., Ikram, A., Ahmed, A. and Munawar, U. (2015). Smart Environment Monitoring System by Employing Wireless Sensor Networks on Vehicles for Pollution Free Smart Cities, Procedia Engineering, 107, 480-484. https://doi.org/10.1016/j.proeng.2015.06.106
  9. Jung, J. (2007). Applying CSP Techniques to Automated Scheduling with Agents in Distributed Environment, Journal of Korea Society of Industrial Information Systems, 12(1), 87-94.
  10. Karlin, S. (2014). A First Course in Stochastic Processes, Academic press.
  11. Kim, G. (2022a). Multi Agents-multi Tasks Assignment Problem using Hybrid Cross-entropy Algorithm, Journal of Korea Society of Industrial Information Systems, 27(4), 37-45.
  12. Kim, G. (2022b). Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability, Journal of Korea Society of Industrial Information Systems, 27(2), 61-69.
  13. Liu, B., Brass, P., Dousse, O., Nain, P. and Towsley, D. (2005, May). Mobility Improves Coverage of Sensor Networks, In Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (pp. 300-308).
  14. Le Thi, H. A., Nguyen, D. M. and Dinh, T. P. (2012). Globally Solving a Nonlinear UAV Task Assignment Problem by Stochastic and Deterministic Optimization Approaches, Optimization Letters, 6(2), 315-329. https://doi.org/10.1007/s11590-010-0259-x
  15. Lee, J., Kim, G. and Moon, I. (2021). A Mobile Multi-agent Sensing Problem with Submodular Functions under a Partition Matroid, Computers and Operations Research, 132, 105265.
  16. Lee, J. H. and Shin M. I (2016). Stochastic Weapon Target Assignment Problem under Uncertainty in Targeting Accuracy, The Korean Operations Research and Management Science Society, 41(3), 23-36.
  17. Mohri, S. S. and Haghshenas, H. (2021). An Ambulance Location Problem for Covering Inherently Rare and Random Road Crashes, Computers and Industrial Engineering, 151, 106937.
  18. Pochwala, S., Anweiler, S., Deptula, A., Gardecki, A., Lewandowski, P. and Przysiezniuk, D. (2021). Optimization of Air Pollution Measurements with Unmanned Aerial Vehicle Low-cost Sensor based on an Inductive Knowledge Management Method, Optimization and Engineering, 22, 1783-1805. https://doi.org/10.1007/s11081-021-09668-2
  19. Qu, G., Brown, D. and Li, N. (2019). Distributed Greedy Algorithm for Multi-agent Task Assignment Problem with Submodular Utility Functions, Automatica, 105, 206-215. https://doi.org/10.1016/j.automatica.2019.03.007
  20. Rajaraman, N. and Vaze, R. (2018). Submodular Maximization under a Matroid Constraint: Asking More from an Old Friend, the Greedy Algorithm, arXiv preprint arXiv:1810.12861.
  21. Rezazadeh, N. and Kia, S. S. (2021). A Sub-modular Receding Horizon Solution for Mobile Multi-agent Persistent Monitoring, Automatica, 127, 109460.
  22. Sun, X., Cassandras, C. G. and Meng, X. (2017, December). A Submodularity-based Approach for Multi-agent Optimal Coverage Problems, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 4082-4087.
  23. Thomas, T. and van Berkum, E. C. (2009). Detection of Incidents and Events in Urban Networks, IET Intelligent Transport Systems, 3(2), 198-205. https://doi.org/10.1049/iet-its:20080045
  24. Wandelt, S., Dai, W., Zhang, J., Zhao, Q. and Sun, X. (2021). An Efficient and Scalable Approach to Hub Location Problems based on Contraction, Computers and Industrial Engineering, 151, 106955.
  25. Yun, Y. S. and Chuluunsukh, A. (2019). Green Supply Chain Network Model: Genetic Algorithm Approach, Journal of Korea Society of Industrial Information Systems, 24(3), 31-38.
  26. Zhong, Y. M. and Xing, C. (2023). Optimization of Zero-carbon Supply Chain Network by Redistribution of E-scooter Sharing, Journal of Korea Society of Industrial Information Systems, 28(3), 21-29.