Acknowledgement
본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20240182-001, 유인 우주기지 건설 핵심기술 협력 개발).
References
- Agrawal, D. (2006), "Microwave Sintering of Ceremics, Composites and Metallic Materials, and Melting of Glasses", T. Indian Ceram. Soc., Vol.65, No.3, pp.129-144. https://doi.org/10.1080/0371750X.2006.11012292
- Allan, S.M., Merritt, B.J., Griffin, B.F., Hintze, P.E., and Shulman, H.S. (2013), "High-temperature Microwave Dielectric Properties and Processing of JSC-1AC Lunar Simulant", J. Aerospace Eng., Vol.26, pp.874-881. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000179
- Allen, C.C. (1998), Bricks and Ceramics, LPI Technical Report 98-01, Lunar and Planetary Institute, Houston, TX.
- Balla, V.K., Roberson, L.B., O'Connor, G.W., Trigwell, S., Bose, S., and Bandyopadhyay, A. (2012), "First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts", Rapid Prototyping J. Vol.18, No.6, pp.451-457. https://doi.org/10.1108/13552541211271992
- Bhattacharya, M. and Basak, T. (2016), "A Review on the Susceptor Assisted Microwave Processing of Materials", Energy, Vol.97, pp. 306-338. https://doi.org/10.1016/j.energy.2015.11.034
- Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124. https://doi.org/10.1016/j.actaastro.2019.04.018
- Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp.8-12. https://doi.org/10.1016/j.cogsc.2017.10.002
- Cole, J.D., Lim, S., Sargeant, H.M., Sheridan, S., Anand, M., and Morse, A. (2023), "Water Extraction from Icy Lunar Simulants Using Low Power Microwave Heating", Acta Astronaut., Vol.209, pp.95-103. https://doi.org/10.1016/j.actaastro.2023.04.035
- Effinger, M.R. (2020), "Microwave Sintering Lunar Landing Pad & Horizontal Infrastructure", Moon Village Architecture Working Group Workshop.
- Effinger, M.R., Wilkerson, R.P., Shulman, H.S., Sanchez, J., Roberts, Z.S., Rickman, D.L., Otte, Q.H., King, A.J., Kaukler, W., Gerling, J.F., Huleis, J.N., Hoppe, D.J., Bruce, R.W., Barmatz, M.B., and Bahr, C.W. (2021), "Microwave Sintering: Initial Scale-up for Lunar Landing and Launch Pad Construction", The 11th joint meeting of The Space Resources Roundtable (SRR) and the Planetary & Terrestrial Mining Sciences Symposium (PTMSS).
- European Space Agency (ESA) (2021), Spaceship EAC: Turning up the heat on lunar dust, https://blogs.esa.int/exploration/spaceshipeac-turning-up-the-heat-on-lunar-dust/.
- Fateri, M. and Gebhardt, A. (2015), "Process Parameters Development of Selective Laser Melting of Lunar Regolith for on-site Manufacturing Applications", Int. J. Appl. Ceram. Tec., Vol.12, No.1, pp.46-52. https://doi.org/10.1111/ijac.12326
- Gatto, A., Defanti, S., Bassoli, E. Mattioni, A., Martini, U., and Incerti, G. (2024), "Preliminary Study on Localized Microwave Sintering of Lunar Regolith", Acta Astronaut., Vol.218, pp.126-136. https://doi.org/10.1016/j.actaastro.2024.02.026
- Gholami, S., Zhang, X., Kim, Y.J., Kim, Y.R., Cui, B., Shin, H.S., and Lee, J. (2022), "Microwave Sintering of a Lunar Regolith Simulant for ISRU Construction: Multiscale Characterization and Finite Element Simulation", Earth & Space 2022, Denver, Colorado, USA, pp.804-816.
- Goulas, A., Binner, J.G.P., Harris, R.A., and Friel, R.J. (2017), "Assessing Extraterrestrial Regolith Material Simulants for in-situ Resource Utilisation based 3D Printing", Appl. Mater. Today, Vol.6, pp.54-61. https://doi.org/10.1016/j.apmt.2016.11.004
- Hintze, P.E., Curran, J., and Back, T. (2009), "Lunar Surface Stabilization via Sintering or the Use of Heat Cured Polymers", 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition.
- Jin, H., Lee, J., Li, Z., Sun, Y., Shin, H.S., and Kim, Y.J. (2024), "Optimized Manufacturing Process of Homogeneous Microwave-sintered Blocks of KLS-1 Lunar Regolith Simulant", J. Build. Eng., Vol.88, Article 109193.
- Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Kim, Y.J. (2021), "The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering", J. Korean Geotech. Soc., Vol.37, No.2, pp.5-17.
- Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S., and Takagi, K. (1998), "Properties of Lunar Soil Simulant Manufactured in Japan", Space, Vol.98, pp.462-468. https://doi.org/10.1061/40339(206)53
- Kim, Y.J., Ryu, B.H., Jin, H., Lee, J., and Shin, H.S. (2021), "Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant", Ceram. Int., Vol.47, No.19, pp.26891-26897. https://doi.org/10.1016/j.ceramint.2021.06.098
- Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA.
- Lim, S., Anand, M., and Rouse, T. (2015), "Estimation of Energy and Material Use of Sintering-based Construction for a Lunar Outpost - with the Example of SinterHab Module Design", 46th Lunar. Planet. Sci. Conference, UK, No. 1076.
- Lim, S., Degli-Alessandrini, G., Bowen, J., Anand, M., and Cowley, A. (2023), "The Microstructure and Mechanical Properties of Microwave-heated Lunar Simulants at Different Input Powers under Vacuum", Sci. Rep., Vol.13, 1804.
- Lim, S., Reeve, S., Lekuona, E., Garbayo, A., Le Toux, T., Morse, A., Bowen, J., and Anand, M. (2022), "Challenges in the Microwave Heating of Lunar Regolith - Analysis through the Design of a Microwave Heating Demonstrator (MHD) Payload", Adv. Space Res., Vol.69, No.1, pp.751-760. https://doi.org/10.1016/j.asr.2021.10.038
- Lin, T.D., Skaar, S.B., and O'Gallagher, J.J. (1997), "Proposed Remote-control, Solar-powered Concrete Production Experiment on the Moon", J. Aerospace Eng., Vol.10, No.2, pp.104.109.
- McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H. (1994), "JSC-1: A New Lunar Soil Simulant", Engineering, Construction, and Operations in Space IV, Vol.2, pp.857-866.
- Meek, T.T., Vaniman, D.T., Cocks, F.H., and Wright, R.A. (1985), "Microwave Processing of Lunar Materials: Potential Applications, in: W.M. W (Ed.), Lunar Bases and Space Activities of the 21st Century", pp.479-486. Houston.
- Meurisse, A., Cowley, A., Cristoforetti, S., Makaya, A., Pambaguian, L., and Sperl, M. (2018), "Solar 3D Printing of Lunar Regolith", Acta Astronaut., Vol.152, pp.800-810. https://doi.org/10.1016/j.actaastro.2018.06.063
- Phuah, X.L., Wang, H., Zhang, B., Cho, J., Zhang, X., and Wang, H. (2020), "Ceramic Material Processing Towards Future Space Habitat: Electric Current-assisted Sintering of Lunar Regolith Simulant", Materials, Vol.13, 4128.
- Ryu, B.H., Wang, C.C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, 04017083.
- Sato, M., Muton, T., Shimotuma, T., Ida, K., Motojima, O., Fujiwara, M., Takayama, S., Mizuno, M., Obata, S., Ito, K., Hirai, T., and Shimada, T. (2003), "Recent Development of Microwave Kilns for Industries in Japan", Proceedings of 3rd World Congress on Microwave and Radio Frequency Applications.
- Sauerborn, M., Neumann, A., Seboldt, W., and Diekmann, B. (2004), "Solar Heated Vacuum Pyrolysis of Lunar Soil", 35th COSPAR Scientific Assembly.
- Sikalidis, C. (2011), "Advances in Ceramics: Synthesis and Characterization, Processing and Specific Applications", IntechOpen.
- Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerospace Eng., Vol.18, pp.188-196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
- Taylor, L.A., Pieters, C., Patchen, A., Taylor, D.-H.S., Morris, R.V., Keller, L.P., and McKay, D.S. (2010), "Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies", J. Geophys. Res.-Planet, Vol.115, E02002, pp.1-14. https://doi.org/10.1029/2009JE003427
- Thiebaut, L. and Cowley, A. (2019), "Microwave Processing of Regolith - A 1D-printing Cavity for Enabling Lunar Construction Technology", 8th European Conference for Aeronautics and Space Sciences (EUCASS).
- Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223. https://doi.org/10.1038/s41561-019-0341-7
- Wen, C., Luo, Z., Liang, H., Liu, X., Lei, W., and Lu, A. (2022), "Effect of Sintering Temperature and Holding Time on the Crystal Phase, Microstructure, and Ionic Conductivity of NASICON-type 33Na2O-40ZrO2-40SiO2-10P2O5 Solid Electrolytes", Appl. Phys. A, Vol.128, No.71, pp.1-12. https://doi.org/10.1007/s00339-021-05118-z
- Youhua, H., Yimin, L., Jia, L., Hao, H., and Xiang, Z. (2018), "Effects of Sintering Temperature and Holding Time on Densification and Mechanical Properties of MIM HK30 Stainless Steel", Int. J. Metall. Met. Phys., Vol.3, No.2, pp.1-7. https://doi.org/10.35840/2631-5076/9222
- Zhang, T., Chao, C., Yao, Z., Xu, K., Zhang, W., Ding, X., Liu, S. Zhao, Z., An, Y., Wang, B., Yu, S., Wang, B., and Chen, H. (2021), "The Technology of Lunar Regolith Environment Construction on Earth", Acta Astronaut., Vol.178, pp.216-232. https://doi.org/10.1016/j.actaastro.2020.08.039
- Zhang, X., Gholami, S., Khedmati, M., Cui, B., Kim, Y.R., Kim, Y.J., Shin, H.S., and Lee, J. (2021), "Spark Plasma Sintering of a Lunar Regolith Simulant: Effects of Parameters on Microstructure Evolution, Phase Transformation, and Mechanical Properties", Ceram. Int., Vol.47, pp.5209-5220. https://doi.org/10.1016/j.ceramint.2020.10.100
- Zhang, X., Khedmati, M., Kim, Y.R., Shin, H.S., Lee, J., Kim, Y.J., and Cui, B. (2020), "Microstructure Evolution during Spark Plasma Sintering of FJS-1 Lunar Soil Simulant", J. Am. Ceram. Soc., Vo.103, pp.899-911. https://doi.org/10.1111/jace.16808
- Zhou, X., Pedrow, P.D., Tang, Z., Bohnet, S., Sablani, S.S., and Tang, J. (2023), "Heating Performance of Microwave Ovens Powered by Magnetron and Solid-state Generators", Innov. Food Sci. Emerg. Technol., Vol.83, 103240.