DOI QR코드

DOI QR Code

Finite Element Analysis of a Full-scale, Rapid-Disassembly, Carbon-Minimized Dismantle Connection Subjected to Cyclic Loading

주기적 하중을 받는 탄소감축을 위한 조립 해체가 용이한 급속 시공 접합부(TZcon)의 수치해석 연구

  • Dave Montellano Osabel (Department of Architectural Design, Chonnam National University) ;
  • Hyeong-Jin Choi (Department of Sustainable Architecture ICT Convergence, Chonnam National University) ;
  • Sang-Hoon Kim (Department of Mechanical Design Engineering, Chonnam National University) ;
  • Young-Ju Kim (Korea Institute of Structural Engineering & Consulting (KISEC)) ;
  • Jae-Hoon Bae (Department of Architectural Design, Chonnam National University)
  • Received : 2024.06.20
  • Accepted : 2024.07.31
  • Published : 2024.08.31

Abstract

A recently proposed rapid-disassembly , carbon-minimized dismantle connection was tested using cyclic loading. To better understand the behavior of the test specimen, three-dimensional finite element (3D-FE) analyses were conducted using a "tied model" (bolted contact surfaces are tied together) and a "bolt-slip model" (contact surfaces slip and separate). The tied model suggests that plastic hinging of the beam occurs if the proposed connection behaves rigidly. The bolt-slip model suggests that the proposed connection, if manufactured and assembled properly, can dissipate energy to about 0.5 times that experienced by a rigid connection. However, when compared in a test, its moment-rotation hysteresis curve does not match well, which suggests that the low performance of the test specimen is attributable to a manufacturing deficiency. Regardless, the results corroborate the pinching phenomenon observed in the experimental hysteresis and fracture failure of the test specimen.

최근 제안된 탄소감축을 위한 조립 해체가 용이한 접합부는 주기적 하중을 가력하여 시험하였다. 시험체의 거동을 더 잘 이해하기 위해 "Tied Model"(볼트 접촉 면이 묶여 있음)과 "Bolt-slip Model"(접촉 면이 미끄러지고 분리됨)을 사용하여 3차원 유한요소(3D-FE) 해석을 수행하였다. Tied Model은 제안된 접합부가 강 접합(Rigid Joint)으로 거동할 경우 보의 소성 힌지가 발생하는 것을 시사한다. 반면, Bolt-slip Model은 제안된 접합부가 적절히 제조(간극 없이) 및 조립된 경우 강성 접합부의 약 0.5배의 에너지를 소산할 수 있음을 시사한다. 그러나 시험 결과와 비교했을 때, 모멘트-회전 이력 곡선이 잘 맞지 않는 것으로 나타났으며, 이는 시험체의 제조 결함(약 5-10mm 간극)으로 인해 성능이 저하되었음을 시사한다. 그럼에도 불구하고 실험에서 관찰된 이력곡선의 핀칭 현상과 시험체의 파괴 모드는 서로 일치하였다.

Keywords

Acknowledgement

본 연구는 전남대학교 학술연구비(과제번호: 2022-2512) 지원, 한국연구재단(NRF-2022R1C1C1003594)의 지원을 받아 수행된 연구임.

References

  1. ABAQUS (2022) Abaqus Analysis User's Guide, Dassault Systems Simulia Corp.
  2. Choi, H.J., Kim, S.H., Kim, Y.J., Doh, J.H., Bae, J.H. (2024) Seismic Performance Verification of Rapid-Disassembly Carbon-Minimized Dismantle Connection, Proceedings of the 11th International Conference on Behaviour of Steel Structures in Seismic Areas, STESSA 2024. Lecture Notes in Civil Engineering, 519. Springer, Cham.
  3. FEMA (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Report No. FEMA-350, SAC Joint Venture, Federal Emergency Management Agency, Washington, DC, 2000.
  4. Fujita, M., Iwata, M. (2008) Reuse System of Building Steel Structures, Struct. & Infrastruct. Eng., 4(3), pp.207~220. https://doi.org/10.1080/15732470600720351
  5. Hartloper, A.R., de Castro e Sousa, A., Lignos, D.G. (2021) Constitutive Modeling for Structural Steels: Nonlinear Isotropic/Kinematic Hardening Material Model and Its Calibration, J. Struct. Eng., 147(4), p.04021031.
  6. Hermwille, L. (2016) Climate Change as a Transformation Challenge, A New Climate Policy Paradigm? GAIA - Ecol. Perspect. Sci. & Soc., 25(1), pp.19~22.
  7. Lee, H.I. (2022) 2050 Carbon Neutral Scenario: Challenges and Opportunities for the Construction Industry, Constr. & Econ. Res. Inst. Korea. (In Korean)
  8. Lisperguier, N., Lopez, A., Vielma, J.C. (2023) Seismic Performance Assessment of a Moment-Resisting Frame Steel Warehouse Provided with Overhead Crane, Mater., 16(7), p.2815.
  9. Sherman, D.R. (1996) Designing with Structural Tubing, Eng. J. Am. Inst. Steel Constr., 33, pp.101~109.
  10. Shin, K.J., Kim, Y.J., Oh, Y.S., Moon, T.S. (2004) Behavior of Welded CFT Column to H-Beam Connections with External Stiffeners, Eng. Struct., 26 (13), pp.1877~1887. https://doi.org/10.1016/j.engstruct.2004.06.016