DOI QR코드

DOI QR Code

Improve the stability of high resistance badminton net via reinforced light material: Development of industry and sport economy

  • Qiong Wu (College of physical education, China Three Gorges University) ;
  • Yi Sun (School of Physical Education, DaLian University) ;
  • Wanxing Yin (College of physical education, China Three Gorges University)
  • 투고 : 2024.05.21
  • 심사 : 2024.08.01
  • 발행 : 2024.08.25

초록

This study investigates the stability and performance of high-resistance badminton nets through the integration of reinforced lightweight materials. By focusing on the structural and economic impacts, the research aims to enhance both the durability and practicality of badminton nets in professional and recreational settings. Using a combination of advanced material engineering techniques and economic analysis, we explore the development of nets constructed from innovative composites. These composites offer improved resistance to environmental factors, such as weather conditions, while maintaining lightweight properties for ease of installation and use. The study employs high-order shear deformation theory and high-order nonlocal theory to assess the mechanical behavior and stability of the nets. Partial differential equations derived from energy-based methodologies are solved using the Generalized Differential Quadrature Method (GDQM), providing detailed insights into the thermal buckling characteristics and overall performance. The findings demonstrate significant improvements in net stability and longevity, highlighting the potential for broader applications in both the sports equipment industry and related economic sectors. By bridging the gap between material science and practical implementation, this research contributes to the advancement of high-performance sports equipment and supports the growth of the sport economy.

키워드

과제정보

This work was supported by 2022 Social Science Research Project of Yichang City (ysk22kt120).

참고문헌

  1. Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022), "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concr. Constr., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377. 
  2. Azarbarmas, M., Mirjavadi, S.S., Ghasemi, A. and Hamouda, A.M. (2018), A Combined Method to Model Dynamic Recrystallization Based on Cellular Automaton and a Phenomenological (CAP) Approach. 
  3. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5. 
  4. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/SCS.2020.36.6.671. 
  5. Cuong Bui, H. (2022), "Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners", Struct. Eng. Mech., 81(2), 231-242. https://doi.org/10.12989/SEM.2022.81.2.231. 
  6. Dai, W., Zhou, X., Li, D., Zhu, S. and Wang, X. (2022a), "Hybrid parallel stochastic configuration networks for industrial data analytics", IEEE T. Ind. Inform., 18(4), 2331-2341. https://doi.org/10.1109/TII.2021.3096840. 
  7. Dai, Z., Ma, Z., Zhang, X., Chen, J., Ershadnia, R., Luan, X. and Soltanian, M.R. (2022b), "An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media", J. Hydrol., 614, 128541. https://doi.org/10.1016/j.jhydrol.2022.128541. 
  8. Dan, M., Ishizawa, Y., Tanaka, S., Nakahara, S., Wakayama, S. and Kohiyama, M. (2015), "Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake", Earthq. Struct., 8(4), 889-913. https://doi.org/10.12989/eas.2015.8.4.889. 
  9. Ding, H.-X. and She, G.-L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/SEM.2021.80.1.063. 
  10. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499. 
  11. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141. 
  12. Eldeeb, A.M., Shabana, Y.M., El-Sayed, T.A. and Elsawaf, A. (2023a), "A nontraditional method for reducing thermoelastic stresses of variable thickness rotating discs", Scientific Reports. 13(1), 13578. https://doi.org/10.1038/s41598-023-39878-w. 
  13. Eldeeb, A.M., Shabana, Y.M., El-Sayed, T.A., Guo, L. and Elsawaf, A. (2023b), "Thermoelastic stresses alleviation for two-dimensional functionally graded cylinders under asymmetric loading", J. Therm. Stress., 46(1), 59-74. https://doi.org/10.1080/01495739.2022.2151960. 
  14. Eldeeb, A.M., Shabana, Y.M. and Elsawaf, A. (2023c), "Enhancement of the hygrothermoelastic performance of rotating cylindrical smart sensors", Arab. J. Sci. Eng., 1-14. https://doi.org/10.1007/s13369-023-08322-6. 
  15. Eldeeb, A.M., Shabana, Y.M. and Elsawaf, A. (2023d), "Thermoelastic stress mitigation and weight reduction of functionally graded multilayer nonuniform thickness disc", J. Strain Anal. Eng. Des., 58(8), 661-671. https://doi.org/10.1177/03093247231165091. 
  16. Eldeeb, A.M., Shabana, Y.M., Guo, L. and Elsawaf, A. (2024), "Asymmetric two-dimensional poroelastic analysis of heterogeneous smart discs considering hygrothermal loading", J. Intell. Mater. Syst. Struct., 35(5), 517-537. https://doi.org/10.1177/1045389X231225258. 
  17. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5. 
  18. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 81. https://doi.org/10.1140/epjp/s13360-019-00042-x. 
  19. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527. 
  20. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770. 
  21. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5. 
  22. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197. 
  23. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 
  24. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8. 
  25. Gu, Q., Tian, J., Yang, B., Liu, M., Gu, B., Yin, Z., Yin, L. and Zheng, W. (2023), "A novel architecture of a six degrees of freedom parallel platform", Electronics, 12(8), 1774. https://doi.org/10.3390/electronics12081774 
  26. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686. 
  27. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019. 
  28. Huang, S., Zong, G., Niu, B., Xu, N. and Zhao, X. (2024), "Dynamic self-triggered fuzzy bipartite time-varying formation tracking for nonlinear multiagent systems with deferred asymmetric output constraints", IEEE T Fuzzy Syst., 32(5), 2700-2712. https://doi.org/10.1109/TFUZZ.2024.3357083. 
  29. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3. 
  30. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768. 
  31. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. https://doi.org/10.12989/SCS.2020.35.1.111. 
  32. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069. 
  33. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2. 
  34. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544. 
  35. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla Abdelmoumen, A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/SCS.2019.32.5.595. 
  36. Mekki, M., Hemsas, M., Zoutat, M. and Elachachi, S.M. (2022), "Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures", Earthq. Struct., 22(3), 219-230. https://doi.org/10.12989/eas.2022.22.3.219. 
  37. Mirjavadi Seyed, S., Forsat, M., Barati Mohammad, R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/SCS.2020.35.4.567. 
  38. Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity", Int. J. Mech. Mater. Des., 16(1), 57-68. https://doi.org/10.1007/s10999-019-09452-2. 
  39. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concr., 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575. 
  40. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain Anal. Engi. Des., 56(3), 181-192. https://doi.org/10.1177/0309324720939811. 
  41. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020d), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765. 
  42. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022), "Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions", Mech. Based Des. Struct., 50(7), 2333-2349. https://doi.org/10.1080/15397734.2020.1777156. 
  43. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020e), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concr., 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283. 
  44. Mirjavadi, S.S., Khan, I., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2023), "Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution", Mech. Based Des. Struct., 51(1), 310-326. https://doi.org/10.1080/15397734.2020.1841654. 
  45. Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M.S. and Barati, M.R. (2020f), "Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multiphase magneto-electro-elastic beams", J. Magn. Magn. Mater., 503 166649. https://doi.org/10.1016/j.jmmm.2020.166649. 
  46. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. 
  47. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002. 
  48. Oumedour, A. and Lazzali, F. (2022), "Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings", Earthq. Struct., 22(1), 83-94. https://doi.org/10.12989/eas.2022.22.1.083. 
  49. Pan, D. (2021), "Time-dependent dynamic response of cylindrical 2D-FG spinning microbeam based on different high-order beam theories applying the GDQEM and Newmark-beta techniques", Waves Random Complex Med., 1-26. https://doi.org/10.1080/17455030.2023.2173953. 
  50. Pasha, A. and Rajaprakash, B.M. (2022), "Functionally graded materials (FGM) fabrication and its potential challenges & applications", Mater. Today Proc., 52, 413-418. https://doi.org/10.1016/j.matpr.2021.09.077. 
  51. Qi, L., Wang, Z., Sun, Y., Khorami, M., Mahmoudi, T. and Wu, H. "Modified couple stress and artificial intelligence examination of nonlinear buckling in porous variable thickness cylinder micro sport structures", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2024.2316795. 
  52. Ramteke Prashik, M., Panda Subrata, K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865. 
  53. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165. 
  54. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061. 
  55. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273. 
  56. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y. 
  57. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html. 
  58. Shakouri, A., Amiri, G.G., Miri, Z.S. and Lak, H.R. (2021), "Seismic poundings of multi-story buildings isolated by TFPB against moat walls", Earthq. Struct., 20(3), 295-307. https://doi.org/10.12989/eas.2021.20.3.295. 
  59. Shan, X. and Huang, A. (2022), "Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam", Adv. Nano Res., 12(3), 281-290. https://doi.org/10.12989/anr.2022.12.3.281. 
  60. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9. 
  61. Soltanieh, G., Yam Michael, C.H., Zhang, J.-Z. and Ke, K. (2022), "Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using superelastic SMA stitches", Struct. Eng. Mech., 81(1), 39-50. https://doi.org/10.12989/SEM.2022.81.1.039. 
  62. Taima, M.S., El-Sayed, T. and Farghaly, S.H. (2022), "Longitudinal vibration analysis of a stepped nonlocal rod embedded in several elastic media", J. Vib. Eng. Technol., 10(4), 1399-1412. https://doi.org/10.1007/s42417-022-00454-7. 
  63. Taima, M.S., El-Sayed, T.A. and Farghaly, S.H. (2020), "Free vibration analysis of multistepped nonlocal Bernoulli-Euler beams using dynamic stiffness matrix method", J. Vib. Control, 27(7-8), 774-789. https://doi.org/10.1177/10775463209334. 
  64. Touloukian, Y.S. and Ho, C.Y. (1970), "Thermal expansion. Nonmetallic solids", Thermophys. Propert. Matter., 13, 247-250. 
  65. Turkeli, E., Karaca, Z. and Ozturk, H.T. (2017), "On the wind and earthquake response of reinforced concrete chimneys", Earthq. Struct., 12(5), 559-567. https://doi.org/10.12989/eas.2017.12.5.559. 
  66. Wang, C., Habibi, M. and Mahmoudi, T. (2024), "Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures", Steel Compos. Struct., 52(1), 15-29. https://doi.org/10.12989/scs.2024.52.1.015. 
  67. Wang, J., Liang, F., Zhou, H., Yang, M. and Wang, Q. (2022a), "Analysis of position, pose and force decoupling characteristics of a 4-UPS/1-RPS parallel grinding robot", Symmetry, 14(4), 825. https://doi.org/10.3390/sym14040825 
  68. Wang, J., Tian, J., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022b), "Control of time delay force feedback teleoperation system with finite time convergence", Front. Neurorobot., 16, 877069. https://doi.org/10.3389/fnbot.2022.877069. 
  69. Wang, L., Wu, T., Wang, D., Liang, Z., Yang, X., Peng, Z., Liu, Y., Liang, Y., Zeng, Z. and Oliveira, J.P. (2023), "A novel heterogeneous multi-wire indirect arc directed energy deposition for in-situ synthesis Al-Zn-Mg-Cu alloy: process, microstructure and mechanical properties", Add. Manuf., 103639. https://doi.org/10.1016/j.addma.2023.103639. 
  70. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022c), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007. 
  71. Wei, F., Zhang, L., Niu, B. and Zong, G. (2024), "Adaptive decentralized fixed-time neural control for constrained strong interconnected nonlinear systems with input quantization", Int. J. Robust Nonlinear Control, Early View. https://doi.org/10.1002/rnc.7497. 
  72. Wu, J., Zheng, J., Sun, G. and Chang, X. (2022), "Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members", Struct. Eng. Mech., 81(1), 11-28. https://doi.org/10.12989/SEM.2022.81.1.011. 
  73. Wu, X., Zhao, N., Ding, S., Wang, H. and Zhao, X. (2024), "Distributed event-triggered output-feedback time-varying formation fault-tolerant control for nonlinear multi-agent systems", IEEE T. Auto. Sci. Eng., 1-12. https://doi.org/10.1109/TASE.2024.3400325. 
  74. Xiao, D., Hu, Y., Wang, Y., Deng, H., Zhang, J., Tang, B., Xi, J., Tang, S. and Li, G. (2022), "Wellbore cooling and heat energy utilization method for deep shale gas horizontal well drilling", Appl. Therm. Eng., 213, 118684. https://doi.org/10.1016/j.applthermaleng.2022.118684. 
  75. Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780. 
  76. Yan, C., Zhang, T., Zheng, T. and Mahmoudi, T. (2024), "Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes", Steel Compos. Struct., 50(4), 459-474. https://doi.org/10.12989/scs.2024.50.4.459. 
  77. Yayli, M.O . (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257. 
  78. Yayli, M.O . (2017), "A compact analytical method for vibration of micro-sized beams with different boundary conditions", Mech. Adv. Mater. Struct., 24(6), 496-508. https://doi.org/10.1080/15376494.2016.1143989. 
  79. Yayli, M.O . (2018a), "Buckling analysis of Euler columns embedded in an elastic medium with general elastic boundary conditions", Mech. Based Des. Struct., 46(1), 110-122. https://doi.org/10.1080/15397734.2017.1292142. 
  80. Yayli, M.O . (2018b), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181. 
  81. Yayli, M.O . (2018c), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 419. https://doi.org/10.1007/s40430-018-1346-7. 
  82. Yayli, M.O . (2018d), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751. 
  83. Yayli, M.O . (2018e), "Torsional vibrations of restrained nanotubes using modified couple stress theory", Microsyst. Technol., 24(8), 3425-3435. https://doi.org/10.1007/s00542-018-3735-3. 
  84. Yayli, M.O . (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4. 
  85. Yayli, M.O . (2020), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26(8), 2661-2671. https://doi.org/10.1007/s00542-020-04808-7. 
  86. Yayli, M.O . (2015), "Stability analysis of gradient elastic microbeams with arbitrary boundary conditions", J. Mech. Sci. Tech., 29(8), 3373-3380. https://doi.org/10.1007/s12206-015-0735-4. 
  87. Zhai, C.H., Zheng, Z., Li, S. and Pan, X. (2018), "The capacity loss of a RCC building under mainshock-aftershock seismic sequences", Earthq. Struct., 15(3), 295. https://doi.org/10.12989/eas.2018.15.3.295. 
  88. Zhang, C., Zhang, X., Santosh, M., Liu, D.D., Ma, C., Zeng, J.H., Jiang, S., Luo, Q., Kong, X.Y. and Liu, L.F. (2020a), "Zircon Hf-O-Li isotopes of granitoids from the Central Asian Orogenic Belt: Implications for supercontinent evolution", Gondwana Res., 83, 132-140. https://doi.org/10.1016/j.gr.2020.02.003. 
  89. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032. 
  90. Zhang, K., Jia, C., Song, Y., Jiang, S., Jiang, Z., Wen, M., Huang, Y., Liu, X., Jiang, T., Peng, J., Wang, X., Xia, Q., Li, B., Li, X. and Liu, T. (2020b), "Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region", Fuel, 263, 115978. https://doi.org/10.1016/j.fuel.2019.115978. 
  91. Zhang, P., Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded nonuniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235. 
  92. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023b), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293. 
  93. Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322. 
  94. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Waves Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627. 
  95. Zhang, Z., Du, J. and Mahmoudi, T. (2023c), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355. 
  96. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/SCS.2020.34.2.215. 
  97. Zhou, P., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Path planning with automatic seam extraction over point cloud models for robotic arc welding", IEEE Robot. Auto. Lett., 6(3), 5002-5009. https://doi.org/10.1109/LRA.2021.3070828.