DOI QR코드

DOI QR Code

Quantum transport of doped rough-edged graphene nanoribbons FET based on TB-NEGF method

  • K.L. Wong (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • M.W. Chuan (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • A. Hamzah (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • S. Rusli (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • N.E. Alias (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • S.M. Sultan (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • C.S. Lim (Faculty of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • M.L.P. Tan (Faculty of Electrical Engineering, Universiti Teknologi Malaysia)
  • 투고 : 2020.12.24
  • 심사 : 2024.08.01
  • 발행 : 2024.08.25

초록

Graphene nanoribbons (GNRs) are considered a promising alternative to graphene for future nanoelectronic applications. However, GNRs-based device modeling is still at an early stage. This research models the electronic properties of n-doped rough-edged 13-armchair graphene nanoribbons (13-AGNRs) and quantum transport properties of n-doped rough-edged 13-armchair graphene nanoribbon field-effect transistors (13-AGNRFETs) at different doping concentrations. Step-up and edge doping are used to incorporate doping within the nanostructure. The numerical real-space nearest-neighbour tight-binding (NNTB) method constructs the Hamiltonian operator matrix, which computes electronic properties, including the sub-band structure and bandgap. Quantum transport properties are subsequently computed using the self-consistent solution of the two-dimensional Poisson and Schrödinger equations within the non-equilibrium Green's function method. The finite difference method solves the Poisson equation, while the successive over-relaxation method speeds up the convergence process. Performance metrics of the device are then computed. The results show that highly doped, rough-edged 13-AGNRs exhibit a lower bandgap. Moreover, n-doped rough-edged 13-AGNRFETs with a channel of higher doping concentration have better gate control and are less affected by leakage current because they demonstrate a higher current ratio and lower off-current. Furthermore, highly n-doped rough-edged 13-AGNRFETs have better channel control and are less affected by the short channel effect due to the lower value of subthreshold swing and drain-induced barrier lowering. The inclusion of dopants enhances the on-current by introducing more charge carriers in the highly n-doped, rough-edged channel. This research highlights the importance of optimizing doping concentrations for enhancing GNRFET-based device performance, making them viable for applications in nanoelectronics.

키워드

과제정보

The authors express their deep gratitude for the outstanding support and research-friendly environment offered by Universiti Teknologi Malaysia (UTM). This research received funding from the UTM Fundamental Research (UTMFR) under cost centre number Q.J130000.3823.22H76. The authors also extend their thanks to the Research Management Centre, School of Graduate Studies, and Faculty of Electrical Engineering.

참고문헌

  1. Bahrami, S. and Shahhoseini, A. (2017), "The vacancy defect in graphene nano-ribbon field-effect transistor in the presence of an external perpendicular magnetic field", Microsyst. Technol., 23(2), 321-328. https://doi.org/10.1007/s00542-015-2525-4.
  2. Baildya, N., Ghosh, N.N. and Chattopadhyay, A.P. (2020), "Tailoring electronic and transport properties of edge-terminated armchair graphene by defect formation and N/B doping", Phys. Lett. A, 384(9), 6. https://doi.org/10.1016/j.physleta.2019.126194.
  3. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.1016/j.physleta.2019.126194.
  4. Cai, J., Pignedoli, C.A., Talirz, L., Ruffieux, P., Sode, H., Liang, L., Meunier, V., Berger, R., Li, R., Feng, X., Mullen, K. and Fasel, R. (2014), "Graphene nanoribbon heterojunctions", Nature Nanotech., 9(11), 896-900. https://doi.org/10.1038/nnano.2014.184.
  5. Chen, Y.C., Cao, T., Chen, C., Pedramrazi, Z., Haberer, D., de Oteyza, D.G., Fischer, F.R., Louie, S.G. and Crommie, M.F. (2015), "Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions", Nature Nanotech., 10(2), 156-160. https://doi.org/10.1038/nnano.2014.307.
  6. Chin, H.C., Hamzah, A., Alias, N.E. and Tan, M.L.P. (2023), "Modeling the impact of phonon scattering with strain effects on the electrical properties of MoS2 field-effect transistors", Micromachines, 14(6), 1235. https://doi.org/10.3390/mi14061235.
  7. Chin, H.C., Lim, C.S., Wong, W.S., Danapalasingam, K.A., Arora, V.K. and Tan, M.L.P. (2014), "Enhanced device and circuit-level performance benchmarking of graphene nanoribbon field-effect transistor against a nano-MOSFET with interconnects", J. Nanomater., 2014(879813), 14. http://doi.org/10.1155/2014/879813.
  8. Dass, D. (2018), "Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials", Superlatt. Microstruct., 115, 88-107. https://doi.org/10.1016/j.spmi.2018.01.001.
  9. Datta, S. (1995), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511805776.
  10. Fiori, G. and Iannaccone, G. (2007), "Simulation of graphene nanoribbon field-effect transistors", IEEE Electr. Device Lett., 28(8), 760-762. https://doi.org/10.1109/LED.2007.901680.
  11. Fu, H.Y., Sun, F., Liu, R., Suo, Y.Q., Bi, J.J., Wang, C.K. and Li, Z.L. (2019), "Doping-induced giant rectification and negative differential conductance (NDC) behaviors in zigzag graphene nano-ribbon junction", Phys. Lett. A. 383(9), 867-872. https://doi.org/10.1016/j.physleta.2018.12.001.
  12. Gao, R.B., Peng, X.F. and Chen, K.Q. (2018), "Edge-oxidation effects on the thermoelectric properties in graphene nanoribbons", Physica E, 104, 302-308. https://doi.org/10.1016/j.physe.2018.07.038.
  13. Guseinov, N.R., Baigarinova, G.A. and Ilyin, A.M. (2016), "Structural damaging in few-layer graphene due to the low energy electron irradiation", Adv. Nano Res., 4(1), 45-50. https://doi.org/10.12989/anr.2016.4.1.045.
  14. Huang, B., Yan, Q., Zhou, G., Wu, J., Gu, B.L., Duan, W. and Liu, F. (2007), "Making a field effect transistor on a single graphene nanoribbon by selective doping", Appl. Phys. Lett., 91(25), 253122. https://doi.org/10.1063/1.2826547.
  15. Khan, M.I., Buzdar, A.R. and Lin, F. (2014). "Ballistic transport modeling in advanced transistors", Proceedings of the 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China. https://doi.org/10.1109/ICSICT.2014.7021476.
  16. Khorshidsavar, A., Ghoreishi, S.S. and Yousefi, R. (2018), "A computational study of an optimized MOS-like graphene nano ribbon field effect transistor (GNRFET)", ECS J. Solid State Sci. Technol., 7(3), P96-P101. https://doi.org/10.1149/2.0111803jss.
  17. Lam, K.T., Chin, S.K., Seah, D.W., Kumar, S.B. and Liang, G. (2010), "Effect of ribbon width and doping concentration on device performance of graphene nanoribbon tunneling field-effect transistors", Japanese J. Appl. Phys., 49(4S), 04DJ10. https://doi.org/10.1143/JJAP.49.04DJ10.
  18. Nazari, A., Faez, R. and Shamloo, H. (2015), "Improving ION/IOFF and sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects", Superlatt. Microstruct., 86, 483-492. https://doi.org/10.1016/j.spmi.2015.08.018.
  19. Nazari, A., Faez, R. and Shamloo, H. (2016), "Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect", Superlatt. Microstruct., 97, 28-45. https://doi.org/10.1016/j.spmi.2016.06.008.
  20. Nguyen, G.D., Tsai, H.-Z., Omrani, A.A., Marangoni, T., Wu, M., Rizzo, D.J., Rodgers, G.F., Cloke, R.R., Durr, R.A., Sakai, Y., Liou, F., Aikawa, A.S., Chelikowsky, J.R., Louie, S.G., Fischer, F.R. and Crommie, M.F. (2017), "Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor", Nature Nanotechnol., 12(11), 1077-1082. https://doi.org/10.1038/nnano.2017.155.
  21. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I. and Firsov, A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  22. Oldiges, P., Vega, R.A., Utomo, H.K., Lanzillo, N.A., Wassick, T., Li, J., Wang, J. and Shahidi, G.G. (2020), "Chip power-frequency scaling in 10/7nm node", IEEE Access, 8, 154329-154337. https://doi.org/10.1109/ACCESS.2020.3017756.
  23. Owlia, H., Keshavarzi, P. and Nasrollahnejad, M.B. (2017), "Effects of Stone-Wales defect position in graphene nanoribbon field-effect transistor", J. Nano Electr. Phys., 9(6), 06008. https://doi.org/10.21272/jnep.9(6).06008.
  24. Poobalan, P., Wong, Y., Alias, N.E., Isaak, S. and Tan, M.L.P. (2024), "Quantum transport properties of AB bilayer graphene via tight-binding approach with NEGF formalisms", Appl. Phys. A, 130(8), 561. https://doi.org/10.1007/s00339-024-07695-1.
  25. Sampaio-Silva, A., Ferreira, D.F., Silva, C.A.B. and Del Nero, J. (2022), "Hydrogenation, width and strain effect in Me-graphene devices", Comput. Mater. Sci., 210, 111456. https://doi.org/10.1016/j.commatsci.2022.111456.
  26. Sampaio-Silva, A., Maciel Correa, S., Silva, C.A.B., Jr. and Del Nero, J. (2020), "Electronic transport and its inelastic effects for a doped phagraphene device", J. Appl. Phys., 128(055104). https://doi.org/10.1063/5.0021492.
  27. Santos, J.C.d.S.d., Ferreira, D.F.S., da Silva, C.A.B. and Del Nero, J. (2020), "Transitions in electrical behavior of Molecular Devices based on 1-D and 2-D graphene-phagraphene-graphene hybrid heterojunctions", Mater. Chem. Phys., 253, 123420. https://doi.org/10.1016/j.matchemphys.2020.123420.
  28. Shamloo, H., Faez, R. and Nazari, A. (2017), "Performance comparison of ideal and defected bilayer graphene nanoribbon FETs", Superlatt. Microstruct., 111, 262-272. https://doi.org/10.1016/j.spmi.2017.06.039.
  29. Shamloo, H., Nazari, A., Faez, R. and Shahhoseini, A. (2020), "Local impact of Stone-Wales defect on a single layer GNRFET", Phys. Lett. A, 384(7), 126170. https://doi.org/10.1016/j.physleta.2019.126170.
  30. Son, Y.W., Cohen, M.L. and Louie, S.G. (2006), "Energy gaps in graphene nanoribbons", Phys. Rev. Lett., 97(21), 216803. https://doi.org/10.1103/PhysRevLett.97.216803.
  31. Tan, M.L.P., Lentaris, G. and Amaratunga, G.A. (2012), "Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET", Nanosc. Res. Lett., 7(1), 467. https://doi.org/10.1186/1556-276X-7-467.
  32. Wong, K.L., Chuan, M.W., Chong, W.K., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019a), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., 7(3), 209-221. https://doi.org/10.12989/anr.2019.7.3.209.
  33. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020a), "Carrier statistics of highly doped armchair graphene nanoribbons with edge disorder", Superlatt. Microstruct., 139, 106404. https://doi.org/10.1016/j.spmi.2020.106404.
  34. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Mohamed Sultan, S., Lim, C.S. and Tan, M.L.P. (2020b), "Carrier transport of rough-edged doped GNRFETs with metal contacts at various channel widths", Superlatt. Microstruct., 143, 106548. https://doi.org/10.1016/j.spmi.2020.106548.
  35. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2020c), "Electronic properties of graphene nanoribbons with line-edge roughness doped with nitrogen and boron", Physica E, 117, 113841. https://doi.org/10.1016/j.physe.2019.113841.
  36. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2020d), "Performance metrics of current transport in pristine graphene nanoribbon field effect transistors using recursive non-equilibrium Green's function approach", Superlatt. Microstruct., 145, 106624. https://doi.org/10.1016/j.spmi.2020.106624.
  37. Wong, K.L., Tan, B.R., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2019b), "Modeling of lightly-doped drain and source contact with boron and nitrogen in graphene nanoribbon", Chinese J. Phys., 62, 258-273. https://doi.org/10.1016/j.cjph.2019.09.026.
  38. Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309.