참고문헌
- Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. A Solid., 50, 28-38. https://doi.org/10.1016/j.euromechsol.2014.10.004.
- Asadi, H. and Wang, Q. (2017), "Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow", Compos. B. Eng., 118, 15-25. https://doi.org/10.1016/j.compositesb.2017.03.001.
- Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. http://dx.doi.org/10.12989/anr.2014.2.4.199.
- Bich, D.H. and Van Tung, H. (2011), "Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects", Int. J. Nonlin. Mech., 46(9), 1195-1204. https://doi.org/10.1016/j.ijnonlinmec.2011.05.015.
- Bich, D.H. and Van Dung, D. (2012), "Nonlinear static and dynamic buckling analysis of functionally graded shallow spherical shells including temperature effects", Compos. Struct., 94(9), 2952-2960. https://doi.org/10.1016/j.compstruct.2012.04.012.
- Budiansky, B. (1962), "Axisymmetric dynamic buckling of clamped shallow spherical shells", NASA TN 1510, 597-606.
- Chan D.Q., Nguyen P.D., Quang V.D., Anh V.T.T., Duc N.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31(3) 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
- Choe, K., Wang, Q. and Tang, J. (2018), "Vibration analysis for coupled composite laminated axis-symmetric doubly-curved revolution shell structures by unified Jacobi-Ritz method", Compos. Struct., 194, 136-157. https://doi.org/10.1016/j.compstruct.2018.03.095.
- Cong, P.H., Trung, V.D., Khoa, N.D. and Duc, N.D. (2022), "Vibration and nonlinear dynamic response of temperature-dependent FG-CNTRC laminated double curved shallow shell with positive and negative Poisson's ratio", Thin Wall. Struct., 171, 108713. https://doi.org/10.1016/j.tws.2021.108713.
- Dat, N.D., Khoa, N.D., Nguyen, P.D. and Duc, N.D. (2020), "An analytical solution for nonlinear dynamic response and vibration of FG-CNT reinforced nanocomposite elliptical cylindrical shells resting on elastic foundations", J. Appl. Math. Mech., 100(1), e201800238. https://doi.org/10.1002/zamm.201800238.
- Dat, N.D., Thanh, N.V., MinhAnh, V. and Duc, N.D. (2022), "Vibration and nonlinear dynamic analysis of sandwich FGCNTRC plate with porous core layer", Mech. Adv. Mater. Struct., 29(10), 1431-1448. https://doi.org/10.1080/15376494.2020.1822476.
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017b), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016.
- Duc, N.D., Dao, H.B. and Vu, T.T.A. (2016), "On the nonlinear stability of eccentrically stiffened functionally graded annular spherical segment shells", Thin Wall. Struct., 106, 258-267. https://doi.org/10.1016/j.tws.2016.05.006.
- Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A Solid., 75, 355-366. https://doi.org/10.1016/j.euromechsol.2019.01.024.
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
- Duc, N.D. (2014), "Nonlinear Static And Dynamic Stability Of Functionally Graded Plates And Shells", Vietnam Natl Univ Press, Hanoi, Vietnam.
- Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266.
- Duc, N.D., Quang, V.D. and Anh, V.T.T. (2017a), "The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundations including temperature effects", Int. J. Mech. Sci., 123, 54-63. https://doi.org/10.1016/j.ijmecsci.2017.01.043.
- Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., 5(2), 69-97. http://doi.org/10.12989/anr.2017.5.2.069.
- Foroutan, K., Ahmadi, H. and Carrera, E. (2019), "Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment", Compos. Struct., 227, 111310. https://doi.org/10.1016/j.compstruct.2019.111310.
- Foroutan, K., Carrera, E. and Ahmadi, H. (2021b), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FGCNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech. A-Solid., 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
- Foroutan, K., Carrera, E. and Ahmadi, H. (2021a), "Static and dynamic hygrothermal postbuckling analysis of sandwich cylindrical panels with an FG-CNTRC core surrounded by nonlinear viscoelastic foundations", Compos. Struct., 259, 113214. https://doi.org/10.1016/j.compstruct.2020.113214.
- Fu, T., Wu, X., Xiao, Z. and Chen, Z. (2021), "Dynamic instability analysis of FG-CNTRC laminated conical shells surrounded by elastic foundations within FSDT", Eur. J. Mech. A Solids, 85, 104139. https://doi.org/10.1016/j.euromechsol.2020.104139.
- Ganapathi, M. and Varadan, T. (1995), "Dynamic buckling of laminated anisotropic spherical caps", J. Appl. Mech., 62(1), 13-19. https://doi.org/10.1115/1.2895879.
- Ganapathi, M. and Varadan, T. (1982), "Dynamic buckling of orthotropic shallow spherical shells", Comput. Struct., 15(5), 517-520. https://doi.org/10.1016/0045-7949(82)90003-7.
- Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano Res., 10(1), 43-57. http://doi.org/10.12989/anr.2021.10.1.043.
- Huang, H. and Han, Q. (2010), "Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent axial load", Compos. Struct., 92(2), 593-598. https://doi.org/10.1016/j.compstruct.2009.09.011.
- Huang, N.C. (1964), "Unsymmetrical buckling of thin shallow spherical shells", J. Appl. Mech., 31(3), 447-457. https://doi.org/10.1115/1.3629662.
- Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. http://doi.org/10.12989/anr.2019.7.6.405.
- Jiao, P., Chen, Z., Li, Y., Ma, H. and Wu, J. (2019), "Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical shell under axial power-law time-varying displacement load", Compos. Struct., 220, 784-797. https://doi.org/10.1016/j.compstruct.2019.04.048.
- Khadimallah, M.A., Hussain, M., Taj, M., Ayed, H. and Tounsi, A. (2021), "Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory", Adv. Nano Res., 10(2), 165-174. http://doi.org/10.12989/anr.2021.10.2.165.
- Lei, Z., Zhang, L. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019.
- Loy, C., Lam, K. and Reddy, J. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Manh, D.T., Anh, V.T.T., Nguyen, P.D. and Duc, N.D. (2020), "Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells", Int. J. Struct. Stabil., 20(2), 2050018. https://doi.org/10.1142/S0219455420500182.
- Pan, B. and Cui W. (2011), "A comparison of different rules for the spherical pressure hull of deep manned submersibles", Chuan Bo Li Xue J. Sh. Mech., 15(3), 276-285. https://doi.org/10.1109/UT.2011.5774084.
- Pan, B. and Cui, W. (2010), "An overview of buckling and ultimate strength of spherical pressure hull under external pressure", Marine Struct., 23(3), 227-240. https://doi.org/10.1016/j.marstruc.2010.07.005.
- Phung-Van, P., Thanh, C.L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087.
- Prakash, T., Sundararajan, N. and Ganapathi, M. (2007), "On the nonlinear axisymmetric dynamic buckling behavior of clamped functionally graded spherical caps", J. Sound Vib., 299(1-2), 36-43. https://doi.org/10.1016/j.jsv.2006.06.060.
- Quan, T.Q. and Duc, N.D. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stresses, 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601.
- Sankar, A., Natarajan, S., Merzouki, T. and Ganapathi, M. (2017), "Nonlinear dynamic thermal buckling of sandwich spherical and conical shells with CNT reinforced facesheets", Int. J. Struct. Stab. Dyn., 17(9), 1750100. https://doi.org/10.1142/S0219455417501000.
- Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8-10), 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029.
- Shahsiah, R., Eslami, M. and Boroujerdy, M.S. (2011), "Thermal instability of functionally graded deep spherical shell", Arch. Appl. Mech., 81(10), 1455-1471. https://doi.org/10.1007/s00419-010-0495-7.
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Design, 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
- Shen, H.S. and Zhu, Z.H. (2010), "Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments", Comput. Mater. Continua, 18(2), 155-182. https://doi.org/10.3970/cmc.2010.018.155.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. http://doi.org/10.12989/anr.2020.8.2.135.
- Thai, C.H., Ferreira, A.J.M., Rabczuk, T. and Nguyen-Xuan, H. (2018), "Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory", Eur. J. Mech. A Solid., 72, 521-538. https://doi.org/10.1016/j.euromechsol.2018.07.012.
- Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Therm. Stresses, 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.
- Thomas, B., Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mech., 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z.
- Tillman, S. (1970), "On the buckling behaviour of shallow spherical caps under a uniform pressure load", Int. J. Solid Struct., 6(1), 37-52. https://doi.org/10.1016/0020-7683(70)90080-6.
- Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. http://doi.org/10.12989/anr.2013.1.1.001.
- Wang, A., Chen, H., Hao, Y., Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
- Wang, X., Bradford, P.D., Liu, W., Zhao, H., Inoue, Y., Maria, J.P., Li, Q., Yuan, F.G. and Zhu, Y. (2011), "Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching", Compos. Sci. Technol., 71(14), 1677-1683. https://doi.org/10.1016/j.compscitech.2011.07.023.
- Wang, J. and Pyrz, R. (2004), "Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas", Compos. Sci. Technol., 64(7-8), 925-934. https://doi.org/10.1016/S0266-3538(03)00024-1.
- Wang, J., Li, Z.L. and Yu, W. (2019), "Structural similitude for the geometric nonlinear buckling of stiffened orthotropic shallow spherical shells by energy approach", Thin Wall. Struct., 138, 430-457. https://doi.org/10.1016/j.tws.2018.02.006.
- Wang, Q., Cui, X., Qin, B. and Liang, Q. (2017), "Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions", Compos. Struct., 182, 364-379. https://doi.org/10.1016/j.compstruct.2017.09.043.
- Wunderlich, W. and Albertin, U. (2002), "Buckling behaviour of imperfect spherical shells", Int. J. Nonlin. Mech., 37(4-5), 589-604. https://doi.org/10.1016/S0020-7462(01)00086-5.
- Ye, Z. (1997), "The non-linear vibration and dynamic instability of thin shallow shells", J. Sound Vib., 202(3), 303-311. https://doi.org/10.1006/jsvi.1996.0827.
- Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.