DOI QR코드

DOI QR Code

Nonlinear dynamic stability and vibration analysis of sandwich FG-CNTRC shallow spherical shell

  • Kamran Foroutan (Faculty of Mechanical Engineering, Shahrood University of Technology) ;
  • Akin Atas (Department of Mechanical, Aerospace and Civil Engineering, University of Manchester) ;
  • Habib Ahmadi (Faculty of Mechanical Engineering, Shahrood University of Technology)
  • Received : 2021.03.20
  • Accepted : 2024.07.29
  • Published : 2024.08.25

Abstract

In this article, the semi-analytical method was used to analyze the nonlinear dynamic stability and vibration analysis of sandwich shallow spherical shells (SSSS). The SSSS was considered as functionally graded carbon nanotube-reinforced composites (FG-CNTRC) with three new patterns of FG-CNTRC. The governing equation was obtained and discretized utilizing the Galerkin method by implementing the von Kármán-Donnell nonlinear strain-displacement relations. The nonlinear dynamic stability was analyzed by means of the fourth-order Runge-Kutta method. Then the Budiansky-Roth criterion was employed to obtain the critical load for the dynamic post-buckling. The approximate solution for the deflection was represented by suitable mode functions, which consisted of the three modes of transverse nonlinear oscillations, including one symmetrically and two asymmetrical mode shapes. The influences of various geometrical characteristics and material parameters were studied on the nonlinear dynamic stability and vibration response. The results showed that the order of layers had a significant influence on the amplitude of vibration and critical dynamic buckling load.

Keywords

References

  1. Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. A Solid., 50, 28-38. https://doi.org/10.1016/j.euromechsol.2014.10.004.
  2. Asadi, H. and Wang, Q. (2017), "Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow", Compos. B. Eng., 118, 15-25. https://doi.org/10.1016/j.compositesb.2017.03.001.
  3. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. http://dx.doi.org/10.12989/anr.2014.2.4.199.
  4. Bich, D.H. and Van Tung, H. (2011), "Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects", Int. J. Nonlin. Mech., 46(9), 1195-1204. https://doi.org/10.1016/j.ijnonlinmec.2011.05.015.
  5. Bich, D.H. and Van Dung, D. (2012), "Nonlinear static and dynamic buckling analysis of functionally graded shallow spherical shells including temperature effects", Compos. Struct., 94(9), 2952-2960. https://doi.org/10.1016/j.compstruct.2012.04.012.
  6. Budiansky, B. (1962), "Axisymmetric dynamic buckling of clamped shallow spherical shells", NASA TN 1510, 597-606.
  7. Chan D.Q., Nguyen P.D., Quang V.D., Anh V.T.T., Duc N.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31(3) 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
  8. Choe, K., Wang, Q. and Tang, J. (2018), "Vibration analysis for coupled composite laminated axis-symmetric doubly-curved revolution shell structures by unified Jacobi-Ritz method", Compos. Struct., 194, 136-157. https://doi.org/10.1016/j.compstruct.2018.03.095.
  9. Cong, P.H., Trung, V.D., Khoa, N.D. and Duc, N.D. (2022), "Vibration and nonlinear dynamic response of temperature-dependent FG-CNTRC laminated double curved shallow shell with positive and negative Poisson's ratio", Thin Wall. Struct., 171, 108713. https://doi.org/10.1016/j.tws.2021.108713.
  10. Dat, N.D., Khoa, N.D., Nguyen, P.D. and Duc, N.D. (2020), "An analytical solution for nonlinear dynamic response and vibration of FG-CNT reinforced nanocomposite elliptical cylindrical shells resting on elastic foundations", J. Appl. Math. Mech., 100(1), e201800238. https://doi.org/10.1002/zamm.201800238.
  11. Dat, N.D., Thanh, N.V., MinhAnh, V. and Duc, N.D. (2022), "Vibration and nonlinear dynamic analysis of sandwich FGCNTRC plate with porous core layer", Mech. Adv. Mater. Struct., 29(10), 1431-1448. https://doi.org/10.1080/15376494.2020.1822476.
  12. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017b), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016.
  13. Duc, N.D., Dao, H.B. and Vu, T.T.A. (2016), "On the nonlinear stability of eccentrically stiffened functionally graded annular spherical segment shells", Thin Wall. Struct., 106, 258-267. https://doi.org/10.1016/j.tws.2016.05.006.
  14. Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A Solid., 75, 355-366. https://doi.org/10.1016/j.euromechsol.2019.01.024.
  15. Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
  16. Duc, N.D. (2014), "Nonlinear Static And Dynamic Stability Of Functionally Graded Plates And Shells", Vietnam Natl Univ Press, Hanoi, Vietnam.
  17. Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266.
  18. Duc, N.D., Quang, V.D. and Anh, V.T.T. (2017a), "The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundations including temperature effects", Int. J. Mech. Sci., 123, 54-63. https://doi.org/10.1016/j.ijmecsci.2017.01.043.
  19. Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., 5(2), 69-97. http://doi.org/10.12989/anr.2017.5.2.069.
  20. Foroutan, K., Ahmadi, H. and Carrera, E. (2019), "Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment", Compos. Struct., 227, 111310. https://doi.org/10.1016/j.compstruct.2019.111310.
  21. Foroutan, K., Carrera, E. and Ahmadi, H. (2021b), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FGCNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech. A-Solid., 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
  22. Foroutan, K., Carrera, E. and Ahmadi, H. (2021a), "Static and dynamic hygrothermal postbuckling analysis of sandwich cylindrical panels with an FG-CNTRC core surrounded by nonlinear viscoelastic foundations", Compos. Struct., 259, 113214. https://doi.org/10.1016/j.compstruct.2020.113214.
  23. Fu, T., Wu, X., Xiao, Z. and Chen, Z. (2021), "Dynamic instability analysis of FG-CNTRC laminated conical shells surrounded by elastic foundations within FSDT", Eur. J. Mech. A Solids, 85, 104139. https://doi.org/10.1016/j.euromechsol.2020.104139.
  24. Ganapathi, M. and Varadan, T. (1995), "Dynamic buckling of laminated anisotropic spherical caps", J. Appl. Mech., 62(1), 13-19. https://doi.org/10.1115/1.2895879.
  25. Ganapathi, M. and Varadan, T. (1982), "Dynamic buckling of orthotropic shallow spherical shells", Comput. Struct., 15(5), 517-520. https://doi.org/10.1016/0045-7949(82)90003-7.
  26. Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano Res., 10(1), 43-57. http://doi.org/10.12989/anr.2021.10.1.043.
  27. Huang, H. and Han, Q. (2010), "Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent axial load", Compos. Struct., 92(2), 593-598. https://doi.org/10.1016/j.compstruct.2009.09.011.
  28. Huang, N.C. (1964), "Unsymmetrical buckling of thin shallow spherical shells", J. Appl. Mech., 31(3), 447-457. https://doi.org/10.1115/1.3629662.
  29. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. http://doi.org/10.12989/anr.2019.7.6.405.
  30. Jiao, P., Chen, Z., Li, Y., Ma, H. and Wu, J. (2019), "Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical shell under axial power-law time-varying displacement load", Compos. Struct., 220, 784-797. https://doi.org/10.1016/j.compstruct.2019.04.048.
  31. Khadimallah, M.A., Hussain, M., Taj, M., Ayed, H. and Tounsi, A. (2021), "Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory", Adv. Nano Res., 10(2), 165-174. http://doi.org/10.12989/anr.2021.10.2.165.
  32. Lei, Z., Zhang, L. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019.
  33. Loy, C., Lam, K. and Reddy, J. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  34. Manh, D.T., Anh, V.T.T., Nguyen, P.D. and Duc, N.D. (2020), "Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells", Int. J. Struct. Stabil., 20(2), 2050018. https://doi.org/10.1142/S0219455420500182.
  35. Pan, B. and Cui W. (2011), "A comparison of different rules for the spherical pressure hull of deep manned submersibles", Chuan Bo Li Xue J. Sh. Mech., 15(3), 276-285. https://doi.org/10.1109/UT.2011.5774084.
  36. Pan, B. and Cui, W. (2010), "An overview of buckling and ultimate strength of spherical pressure hull under external pressure", Marine Struct., 23(3), 227-240. https://doi.org/10.1016/j.marstruc.2010.07.005.
  37. Phung-Van, P., Thanh, C.L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087.
  38. Prakash, T., Sundararajan, N. and Ganapathi, M. (2007), "On the nonlinear axisymmetric dynamic buckling behavior of clamped functionally graded spherical caps", J. Sound Vib., 299(1-2), 36-43. https://doi.org/10.1016/j.jsv.2006.06.060.
  39. Quan, T.Q. and Duc, N.D. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stresses, 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601.
  40. Sankar, A., Natarajan, S., Merzouki, T. and Ganapathi, M. (2017), "Nonlinear dynamic thermal buckling of sandwich spherical and conical shells with CNT reinforced facesheets", Int. J. Struct. Stab. Dyn., 17(9), 1750100. https://doi.org/10.1142/S0219455417501000.
  41. Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8-10), 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029.
  42. Shahsiah, R., Eslami, M. and Boroujerdy, M.S. (2011), "Thermal instability of functionally graded deep spherical shell", Arch. Appl. Mech., 81(10), 1455-1471. https://doi.org/10.1007/s00419-010-0495-7.
  43. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Design, 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
  44. Shen, H.S. and Zhu, Z.H. (2010), "Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments", Comput. Mater. Continua, 18(2), 155-182. https://doi.org/10.3970/cmc.2010.018.155.
  45. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. http://doi.org/10.12989/anr.2020.8.2.135.
  46. Thai, C.H., Ferreira, A.J.M., Rabczuk, T. and Nguyen-Xuan, H. (2018), "Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory", Eur. J. Mech. A Solid., 72, 521-538. https://doi.org/10.1016/j.euromechsol.2018.07.012.
  47. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Therm. Stresses, 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.
  48. Thomas, B., Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mech., 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z.
  49. Tillman, S. (1970), "On the buckling behaviour of shallow spherical caps under a uniform pressure load", Int. J. Solid Struct., 6(1), 37-52. https://doi.org/10.1016/0020-7683(70)90080-6.
  50. Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. http://doi.org/10.12989/anr.2013.1.1.001.
  51. Wang, A., Chen, H., Hao, Y., Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
  52. Wang, X., Bradford, P.D., Liu, W., Zhao, H., Inoue, Y., Maria, J.P., Li, Q., Yuan, F.G. and Zhu, Y. (2011), "Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching", Compos. Sci. Technol., 71(14), 1677-1683. https://doi.org/10.1016/j.compscitech.2011.07.023.
  53. Wang, J. and Pyrz, R. (2004), "Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas", Compos. Sci. Technol., 64(7-8), 925-934. https://doi.org/10.1016/S0266-3538(03)00024-1.
  54. Wang, J., Li, Z.L. and Yu, W. (2019), "Structural similitude for the geometric nonlinear buckling of stiffened orthotropic shallow spherical shells by energy approach", Thin Wall. Struct., 138, 430-457. https://doi.org/10.1016/j.tws.2018.02.006.
  55. Wang, Q., Cui, X., Qin, B. and Liang, Q. (2017), "Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions", Compos. Struct., 182, 364-379. https://doi.org/10.1016/j.compstruct.2017.09.043.
  56. Wunderlich, W. and Albertin, U. (2002), "Buckling behaviour of imperfect spherical shells", Int. J. Nonlin. Mech., 37(4-5), 589-604. https://doi.org/10.1016/S0020-7462(01)00086-5.
  57. Ye, Z. (1997), "The non-linear vibration and dynamic instability of thin shallow shells", J. Sound Vib., 202(3), 303-311. https://doi.org/10.1006/jsvi.1996.0827.
  58. Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.