DOI QR코드

DOI QR Code

Limit equilibrium and swarm intelligence solutions in analyzing shallow footing's bearing capacity located on two-layered cohesionless soils

  • Hossein Moayedi (Institude of Research and Development, Duy Tan University) ;
  • Mesut Gor (Department of Civil Engineering, Division of Geotechnical Engineering, Firat University) ;
  • Mansour Mosallanezhad (Department of Civil and Environmental Engineering, Shiraz University) ;
  • Soheil Ghareh (Department of Civil Engineering, Payame Noor University) ;
  • Binh Nguyen Le (Institude of Research and Development, Duy Tan University)
  • Received : 2022.11.11
  • Accepted : 2024.08.11
  • Published : 2024.08.25

Abstract

The research findings of two nonlinear machine learning and soft computing models- the Cuckoo optimization algorithm (COA) and the Teaching-learning-based optimization (TLBO) in combination with artificial neural network (ANN)-are presented in this article. Detailed finite element modeling (FEM) of a shallow footing on two layers of cohesionless soil provided the data sets. The models are trained and tested using the FEM outputs. Additionally, various statistical indices are used to compare and evaluate the predicted and calculated models, and the most precise model is then introduced. The most precise model is recommended to estimate the solution after the model assessment process. When the anticipated findings are compared to the FEM data, there is an excellent agreement, which indicates that the TLBO-MLP solutions in this research are reliable (R2=0.9816 for training and 0.99366 for testing). Additionally, the optimized COA-MLP network with a swarm size of 500 was observed to have R2 and RMSE values of (0.9613 and 0.11459) and (0.98017 and 0.09717) for both the normalized training and testing datasets, respectively. Moreover, a straightforward formula for the soft computing model is provided, and an excellent consensus is attained, indicating a high level of dependability for the suggested model.

Keywords

References

  1. Boufarh, R., Abbeche, K. and Abdi, A. (2019), "Experimental investigation of interference between adjacent footings on layered cohesionless soil", Soil Mech. Found. Eng., 56(2), 128-135. https://doi.org/10.1007/s11204-019-09580-z.
  2. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  3. Cheng, Y.M., Li, L., Sun, Y. and Au, S. (2012), "A coupled particle swarm and harmony search optimization algorithm for difficult geotechnical problems", Struct. Multidiscip. Optim., 45, 489-501. https://doi.org/10.1007/s00158-011-0694-z.
  4. Dong-ping, D. (2021), "Novel model for limit-equilibrium analysis of slope stability with a nonlinear strength criterion", Int. J. Geomech., 21(9), 06021021. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002137.
  5. Du, K.L., Lai, A., Cheng, K. and Swamy, M. (2002), "Neural methods for antenna array signal processing: a review", Signal Pr., 82(4), 547-561. https://doi.org/10.1016/S0165-1684(01)00185-2.
  6. Fatahi, B., Tabatabaiefar, S. and Samali, B. (2014), "Soil-structure interaction vs site effect for seismic design of tall buildings on soft soil", Geomech. Eng., 6(3), 293-320. https://doi.org/10.12989/gae.2014.6.3.293.
  7. Ghazavi, M. and Eghbali, A.H. (2008), "A simple limit equilibrium approach for calculation of ultimate bearing capacity of shallow foundations on two-layered granular soils", Geotech. Geol. Eng., 26, 535-542. https://doi.org/10.1007/s10706-008-9187-2.
  8. Ghorbani, M.A., Shamshirband, S., Haghi, D.Z., Azani, A., Bonakdari, H. and Ebtehaj, I. (2017), "Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point", Soil Tillage Res., 172, 32-38. https://doi.org/10.1016/j.still.2017.04.009.
  9. Kuo, Y., Jaksa, M., Lyamin, A. and Kaggwa, W. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multilayered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002.
  10. Lyu, C., Wang, Z.H., Zeng, Z.Q. and Zhang, X. (2022), "Limit analysis of ultimate uplift capacity and failure mechanism of shallow plate anchors in multilayered soils", J. Central South Univ., 29(6), 2049-2061. https://doi.org/10.1007/s11771-022-5061-2.
  11. Moayedi, H. and Armaghani, D.J. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput. 34(2), 347-356. https://doi.org/10.1007/s00366-017-0545-7.
  12. Moayedi, H., Bui, D.T., Gor, M., Pradhan, B. and Jaafari, A. (2019), "The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes", ISPRS Int. Geo-Inf., 8(9), 22. https://doi.org/10.3390/ijgi8090391.
  13. Moayedi, H. and Hayati, S. (2018), "Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods", Appl. Soft. Comput., 66, 208-219. https://doi.org/10.1016/j.asoc.2018.02.027.
  14. Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X.N., Bui, D.T. and Rashid, A.S.A. (2020), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network models". Eng. Comput. 36(2), 671-687. https://doi.org/10.1007/s00366-019-00723-2.
  15. Moayedi, H. and Rezaei, A. (2021), "The feasibility of PSO-ANFIS in estimating bearing capacity of strip foundations rested on cohesionless slope", Neural Comput. Appl., 33(9), 4165-4177. https://doi.org/10.1007/s00521-020-05231-9.
  16. Onyelowe, K.C., Mojtahedi, F.F., Ebid, A.M., Rezaei, A., Osinubi, K.J., Eberemu, A.O., Salahudeen, B., Gadzama, E.W., Rezazadeh, D. and Jahangir, H. (2023), "Selected AI optimization techniques and applications in geotechnical engineering", Cogent Eng., 10(1), 2153419. https://doi.org/10.1080/23311916.2022.2153419.
  17. Padmini, D., Ilamparuthi, K. and Sudheer, K. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001.
  18. Picton, P. (1994), Introduction to neural networks. Springer.
  19. Rajabioun, R. (2011), "Cuckoo optimization algorithm", Appl. Soft Comput., 11(8), 5508-5518. https://doi.org/10.1016/j.asoc.2011.05.008.
  20. Rao, P., Liu, Y. and Cui, J. (2015), "Bearing capacity of strip footings on two-layered clay under combined loading", Comput. Geotech., 69, 210-218. https://doi.org/10.1016/j.compgeo.2015.05.018.
  21. Rao, R.V., Savsani, V.J. and Vakharia, D. (2012), "Teaching-learning-based optimization: an optimization method for continuous nonlinear large scale problems", Inform. Sci., 183(1), 1-15. https://doi.org/10.1016/j.ins.2011.08.006.
  22. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2019), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. https://doi.org/10.12989/gae.2019.19.6.473.
  23. Sohrabi, N., Haddadvand, R. and Nabi, H. (2024), "Numerical investigation of the effect of fluid nanohybrid type and volume concentration of fluid on heat transfer and pressure drop in spiral double tube heat exchanger equipped with innovative conical turbulator", Case Studies in Therm. Eng., 60, 104751. https://doi.org/10.1016/j.csite.2024.104751,
  24. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley & Sons, New York.
  25. Ukritchon, B. and Keawsawasvong, S. (2016), "A practical method for the optimal design of continuous footing using ant-colony optimization", Acta Geotechnica Slovenica, 13(2), 45-55.