DOI QR코드

DOI QR Code

Analysis of the hygro-thermo-mechanical response of functionally graded plates resting on elastic foundations based on various micromechanical models

  • Belkacem Adim (Department of Sciences and technology, Tissemsilt University) ;
  • Tahar Hassaine Daouadji (Geomatics and Sustainable Development Laboratory, Ibn Khaldoun University)
  • 투고 : 2024.05.06
  • 심사 : 2024.08.13
  • 발행 : 2024.08.25

초록

In this research the hygro-thermo-mechanical loading and micromechanical model effects on bending behavior of functionally graded material plates resting on Winkler and Pasternak elastic foundations, the higher order shear deformation theory is used here. The material properties of the plate: young's modulus, thermal coefficient and moisture expansion coefficient are assumed to be graded in the thickness direction according to various micromechanical models starting with the Voigt's model which is commonly used in most functionally graded plates studies to the Reuss's, LRVE's and Mori-Tanaka's models. The principle of virtual displacement is used to determine the equilibrium equations and the a several numerical results are given to validate the precision of the present method for bending behavior of FGM plates subjected to hygro-thermo-mechanical loading resting on elastic foundations. Afterwards, a parametric study is conducted to determine the effect of different parameters on the deflection of the FGM plates like micromechanical models, type of loading and plate geometry. In the lights of the present research, it can be concluded that the present theory is accurate and simple in predicting the deflection behavior of functionally graded plates under hygro-thermo-mechanical effects and micromechanical models.

키워드

참고문헌

  1. Adim, B., Daouadji, T.H. and Abbes, B. (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x.
  2. Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
  3. Amari, A. and Maktoof, M.A.J. (2023), "On the response of the sandwich shell subjected to thermo-mechanical shock loading", Waves in Random and Complex Media, 1-21. https://doi.org/10.1080/17455030.2023.2194449.
  4. Bagheri, H., Eslami, M.R. and Kiani, Y. (2023), "Geometrically nonlinear response of FGM joined conical-conical shells subjected to thermal shock", Thin-Walled Struct., 182, 110171. https://doi.org/10.1016/j.tws.2022.110171.
  5. Bagheri, H., Kiani, Y. and Eslami, M.R. (2021), "Free vibration of FGM conical-spherical shells", Thin-Walled Struct., 160, 107387. https://doi.org/10.1016/j.tws.2020.107387.
  6. Cao, J., Du, J., Zhang, H., He, H., Bao, C. and Liu, Y. (2024), "Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates", Constr. Build. Mater., 433, 136608. https://doi.org/10.1016/j.conbuildmat.2024.136608.
  7. Daouadji, T.H. and Adim, B. (2016), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., 5(3), 141-169. https://doi.org/10.12989/amr.2016.5.3.141.
  8. Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2016.5.3.269.
  9. Daouadji, T.H., Chedad, A. and Adim, B. (2016), "Interfacial stresses in RC beam bonded with a functionally graded material plate", Struct. Eng. Mech., 60(4), 693-705. https://doi.org/10.12989/sem.2016.60.4.693.
  10. Gao, Q., Ding, Z. and Liao, W.H. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  11. Gasik, M.M. (1998), "Micromechanical modelling of functionally graded materials", Comput. Mater. Sci., 13(1-3), 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5.
  12. Ghiasian, S.E., Kiani, Y. and Eslami, M.R. (2013), "Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001.
  13. Gupta, A., Talha, M. and Chaudhari, V.K. (2016), "Natural frequency of functionally graded plates resting on elastic foundation using finite element method", Procedia Technol., 23, 163-170. https://doi.org/10.1016/j.protcy.2016.03.013.
  14. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717.
  15. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  16. Kiani, Y. and Eslami, M.R. (2014), "Geometrically non-linear rapid heating of temperature-dependent circular FGM plates", J. Therm. Stresses, 37(12), 1495-1518. http://dx.doi.org/10.1080/01495739.2014.937259.
  17. Kiani, Y. and Eslami, M.R. (2015), "Thermal postbuckling of imperfect circular functionally graded material plates: examination of Voigt, Mori-Tanaka, and self-consistent schemes", J. Press. Vess. Technol., 137(2), 021201. https://doi.org/10.1115/1.4026993.
  18. Kiani, Y., Sadighi, M. and Eslami, M.R. (2013), "Dynamic analysis and active control of smart doubly curved FGM panels", Compos. Struct., 102, 205-216. http://dx.doi.org/10.1016/j.compstruct.2013.02.031.
  19. Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comput. Method. Appl. Mech Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.
  20. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Mar. Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  21. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  22. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  23. Nemati, A.R. and Mahmoodabadi, M.J. (2020), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 90(5), 883-915. https://doi.org/10.1007/s00419-019-01646-6.
  24. Nguyen, N.D., Nguyen, T.N., Nguyen, T.K. and Vo, T.P. (2023), "A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation". Structures, 50, 1934-1950. https://doi.org/10.1016/j.istruc.2023.03.018.
  25. Parida, S. and Mohanty, S.C. (2018), "Free vibration and buckling analysis of functionally graded plates resting on elastic foundation using higher order theory", Int. J. Struct. Stab. Dyn., 18(4), 1850049. https://doi.org/10.1142/S0219455418500499.
  26. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  27. Sadowski, T., Birsan, M. and Pietras, D. (2015), "Multilayered and FGM structural elements under mechanical and thermal loads. Part I: Comparison of finite elements and analytical models", Arch. Civil Mech. Eng., 15(4), 1180-1192. https://doi.org/10.1016/j.acme.2014.09.004.
  28. Shahsavari, D. and Karami, B. (2022), "Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates", Arch. Civil Mech. Eng., 22(2), 92. https://doi.org/10.1007/s43452-022-00409-5.
  29. Shariyat, M., Jahanshahi, S. and Rahimi, H. (2019), "Nonlinear Hermitian generalized hygrothermoelastic stress and wave propagation analyses of thick FGM spheres exhibiting temperature, moisture, and strain-rate material dependencies", Compos. Struct., 229, 111364. https://doi.org/10.1016/j.compstruct.2019.111364.
  30. Sharma, P. and Singh, R. (2019), "Investigation on modal behaviour of FGM annular plate under hygrothermal effect", IOP conference series: materials science and engineering, 624(1), 012001. https://doi.org/10.1088/1757-899X/624/1/012001.
  31. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  32. Soltani, K., Bessaim, A., Houari, M.S.A., Kaci, A., Benguediab, M., Tounsi, A. and Alhodaly, M.S. (2019), "A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations", Steel Compos. Struct., 30(1), 13-29. https://doi.org/10.12989/scs.2019.30.1.013.
  33. Tounsi, A., Bousahla, A.A., Tahir, S.I., Mostefa, A.H., Bourada, F., Al-Osta, M.A. and Tounsi, A. (2023), "Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation", Int. J. Struct. Stab. Dyn., 2450117. https://doi.org/10.1142/S0219455424501177.
  34. Wang, Y. and Sigmund, O. (2023), "Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading", Comput. Method. Appl. M., 407, 115938. https://doi.org/10.1016/j.cma.2023.115938.
  35. Zaidi, M., Joshi, K.K., Shukla, A. and Cherinet, B. (2021), "A review of the various modelling schemes of unidirectional functionally graded material structures", AIP Conference Proceedings, AIP Publishing, 2341(1). https://doi.org/10.1063/5.0050306.
  36. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Modell., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  37. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Cleaner Product., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390.
  38. Zhang, H., Liu, H. and Kuai, H. (2024), "Stress intensity factor analysis for multiple cracks in orthotropic steel decks rib-to-floorbeam weld details under vehicles loading", Eng. Fail. Anal., 164, 108705. https://doi.org/10.1016/j.engfailanal.2024.108705.
  39. Zhang, L., Lin, Q., Chen, F., Zhang, Y. and Yin, H. (2020), "Micromechanical modeling and experimental characterization for the elastoplastic behavior of a functionally graded material", Int. J Solids Struct., 206, 370-382. https://doi.org/10.1016/j.ijsolstr.2020.09.010.
  40. Zuiker, J.R. (1995), "Functionally graded materials: choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H.