References
- Adim, B., Daouadji, T.H. and Abbes, B. (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x.
- Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
- Amari, A. and Maktoof, M.A.J. (2023), "On the response of the sandwich shell subjected to thermo-mechanical shock loading", Waves in Random and Complex Media, 1-21. https://doi.org/10.1080/17455030.2023.2194449.
- Bagheri, H., Eslami, M.R. and Kiani, Y. (2023), "Geometrically nonlinear response of FGM joined conical-conical shells subjected to thermal shock", Thin-Walled Struct., 182, 110171. https://doi.org/10.1016/j.tws.2022.110171.
- Bagheri, H., Kiani, Y. and Eslami, M.R. (2021), "Free vibration of FGM conical-spherical shells", Thin-Walled Struct., 160, 107387. https://doi.org/10.1016/j.tws.2020.107387.
- Cao, J., Du, J., Zhang, H., He, H., Bao, C. and Liu, Y. (2024), "Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates", Constr. Build. Mater., 433, 136608. https://doi.org/10.1016/j.conbuildmat.2024.136608.
- Daouadji, T.H. and Adim, B. (2016), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., 5(3), 141-169. https://doi.org/10.12989/amr.2016.5.3.141.
- Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2016.5.3.269.
- Daouadji, T.H., Chedad, A. and Adim, B. (2016), "Interfacial stresses in RC beam bonded with a functionally graded material plate", Struct. Eng. Mech., 60(4), 693-705. https://doi.org/10.12989/sem.2016.60.4.693.
- Gao, Q., Ding, Z. and Liao, W.H. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
- Gasik, M.M. (1998), "Micromechanical modelling of functionally graded materials", Comput. Mater. Sci., 13(1-3), 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5.
- Ghiasian, S.E., Kiani, Y. and Eslami, M.R. (2013), "Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001.
- Gupta, A., Talha, M. and Chaudhari, V.K. (2016), "Natural frequency of functionally graded plates resting on elastic foundation using finite element method", Procedia Technol., 23, 163-170. https://doi.org/10.1016/j.protcy.2016.03.013.
- Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Kiani, Y. and Eslami, M.R. (2014), "Geometrically non-linear rapid heating of temperature-dependent circular FGM plates", J. Therm. Stresses, 37(12), 1495-1518. http://dx.doi.org/10.1080/01495739.2014.937259.
- Kiani, Y. and Eslami, M.R. (2015), "Thermal postbuckling of imperfect circular functionally graded material plates: examination of Voigt, Mori-Tanaka, and self-consistent schemes", J. Press. Vess. Technol., 137(2), 021201. https://doi.org/10.1115/1.4026993.
- Kiani, Y., Sadighi, M. and Eslami, M.R. (2013), "Dynamic analysis and active control of smart doubly curved FGM panels", Compos. Struct., 102, 205-216. http://dx.doi.org/10.1016/j.compstruct.2013.02.031.
- Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comput. Method. Appl. Mech Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.
- Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Mar. Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Nemati, A.R. and Mahmoodabadi, M.J. (2020), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 90(5), 883-915. https://doi.org/10.1007/s00419-019-01646-6.
- Nguyen, N.D., Nguyen, T.N., Nguyen, T.K. and Vo, T.P. (2023), "A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation". Structures, 50, 1934-1950. https://doi.org/10.1016/j.istruc.2023.03.018.
- Parida, S. and Mohanty, S.C. (2018), "Free vibration and buckling analysis of functionally graded plates resting on elastic foundation using higher order theory", Int. J. Struct. Stab. Dyn., 18(4), 1850049. https://doi.org/10.1142/S0219455418500499.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Sadowski, T., Birsan, M. and Pietras, D. (2015), "Multilayered and FGM structural elements under mechanical and thermal loads. Part I: Comparison of finite elements and analytical models", Arch. Civil Mech. Eng., 15(4), 1180-1192. https://doi.org/10.1016/j.acme.2014.09.004.
- Shahsavari, D. and Karami, B. (2022), "Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates", Arch. Civil Mech. Eng., 22(2), 92. https://doi.org/10.1007/s43452-022-00409-5.
- Shariyat, M., Jahanshahi, S. and Rahimi, H. (2019), "Nonlinear Hermitian generalized hygrothermoelastic stress and wave propagation analyses of thick FGM spheres exhibiting temperature, moisture, and strain-rate material dependencies", Compos. Struct., 229, 111364. https://doi.org/10.1016/j.compstruct.2019.111364.
- Sharma, P. and Singh, R. (2019), "Investigation on modal behaviour of FGM annular plate under hygrothermal effect", IOP conference series: materials science and engineering, 624(1), 012001. https://doi.org/10.1088/1757-899X/624/1/012001.
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
- Soltani, K., Bessaim, A., Houari, M.S.A., Kaci, A., Benguediab, M., Tounsi, A. and Alhodaly, M.S. (2019), "A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations", Steel Compos. Struct., 30(1), 13-29. https://doi.org/10.12989/scs.2019.30.1.013.
- Tounsi, A., Bousahla, A.A., Tahir, S.I., Mostefa, A.H., Bourada, F., Al-Osta, M.A. and Tounsi, A. (2023), "Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation", Int. J. Struct. Stab. Dyn., 2450117. https://doi.org/10.1142/S0219455424501177.
- Wang, Y. and Sigmund, O. (2023), "Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading", Comput. Method. Appl. M., 407, 115938. https://doi.org/10.1016/j.cma.2023.115938.
- Zaidi, M., Joshi, K.K., Shukla, A. and Cherinet, B. (2021), "A review of the various modelling schemes of unidirectional functionally graded material structures", AIP Conference Proceedings, AIP Publishing, 2341(1). https://doi.org/10.1063/5.0050306.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Modell., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Cleaner Product., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390.
- Zhang, H., Liu, H. and Kuai, H. (2024), "Stress intensity factor analysis for multiple cracks in orthotropic steel decks rib-to-floorbeam weld details under vehicles loading", Eng. Fail. Anal., 164, 108705. https://doi.org/10.1016/j.engfailanal.2024.108705.
- Zhang, L., Lin, Q., Chen, F., Zhang, Y. and Yin, H. (2020), "Micromechanical modeling and experimental characterization for the elastoplastic behavior of a functionally graded material", Int. J Solids Struct., 206, 370-382. https://doi.org/10.1016/j.ijsolstr.2020.09.010.
- Zuiker, J.R. (1995), "Functionally graded materials: choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H.