DOI QR코드

DOI QR Code

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling (Changsha University of Science & Technology) ;
  • Xing Wu (Changsha University of Science & Technology) ;
  • Fu Huang (Changsha University of Science & Technology) ;
  • Jian Xiao (Changsha University of Science & Technology) ;
  • Yiwei Sun (Shanghai Geoharbor Construction Group Co., Ltd.) ;
  • Wei Feng (China Construction Fifth Engineering Division Corp, Ltd)
  • Received : 2023.07.06
  • Accepted : 2024.07.30
  • Published : 2024.08.25

Abstract

With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 51878074, 52278395, and 52078061).

References

  1. Avcar, M., Hadji, L. and Akan, R. (2022), "The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams", Geomech. Eng., 31(1), 99-112. https://doi.org/10.12989/gae.2022.31.1.099.
  2. Bennedjadi, M., Aldosari, S.M. and Chikh, A. (2023), "Viscoelastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions", Geomech. Eng., 32(2), 159-177. https://doi.org/10.12989/gae.2023.32.2.159.
  3. Cai, G., Chu, Y. and Liu, S. (2016), "Evaluation of subsurface spatial variability in site characterization based on RCPTU data", Bull. Eng. Geol. Environ., 75, 401-412. https://doi.org/10.1007/s10064-015-0727-8.
  4. Chen, S. (2020), "Study on deformation response characteristics of shield tunnel lining structure under adjacent stratum disturbance", Ph.D. Dissertation, Hunan University, Hunan.
  5. Ding, Z., Jin, J. and Han, T.C. (2018), "Analysis of the zoning excavation monitoring data of a narrow and deep foundation pit in a soft soil area", J. Geophys. Eng., 15(4), 1231-1241. https://doi.org/10.1088/1742-2140/aaadd2.
  6. Ding, Z., Jin, J. and Han, T.C. (2018), "Analysis of the zoning excavation monitoring data of a narrow and deep foundation pit in a soft soil area", J. Geophys. Eng., 15, 1231-1241. https://doi.org/ 10.1088/1742-2140/aaadd2.
  7. Dagdeviren, U. (2016), "Shear stresses below the rectangular foundations subjected to biaxial bending", Geomech. Eng., 10(2), 189-205. https://doi.org/10.12989/gae.2016.10.2.189.
  8. Huang X., Huang H.W. and Zhang D.M. (2012), "Study on longitudinal deformation of existing shield tunnel under excavation unloading", J. Geotech. Eng., 34(7), 1241-1249.
  9. He, G., Li, X. and Lou, R. (2016), "Nonlinear FEA of higher order beam resting on a tensionless foundation with friction", Geomech. Eng., 11(1), 95-116. https://doi.org/10.12989/gae.2016.11.1.095.
  10. Huang, K., Sun, Y.W. and Yang, J.S. (2022), "Three-dimensional displacement characteristics of adjacent pile induced by shield tunneling under influence of multiple factors", J. Central South Univ., 29(5), 1597-1615. https://doi.org/10.1007/S11771-022-5003-Z.
  11. Liang, R.Z., Lin, C.G. and Tang, D. (2017), "Analysis of longitudinal deformation of adjacent tunnel due to excavation of foundation pit considering tunnel shear effect", J. Rock Mech. Eng., 36(1), 223-233. https://doi.org/10.13722/j.cnki.jrme.2015.1585.
  12. Li, Z., Cheng, K. and Zhong, C.L. (2021), "Longitudinal equivalent flexural stiffness of rectangular pipe-jacking tunnel in integrated pipe gallery", International Symposium-Asian Rock Mechanics Symposium, Beijing, China, October.
  13. Li, D.P., Tang, D.G. and Huang, M. (2014), "Study on mechanism of space effect of deep foundation pit and soil stress considering its influence", J. Zhejiang Univ., 48(9), 1632-1639.
  14. Lin, P., Liu, P. and Ankit, G. (2021), "Deformation monitoring analysis and numerical simulation in a deep foundation pit", Soil Mech. Found. Eng., 58(1), 56-62. https://doi.org/10.1007/S11204-021-09706-2.
  15. Liu, N.W., Gong, X.N. and Yu, F. (2014), "Analysis of spatial effects in strutted excavation and related influential factors", Rock Soil Mech., 35(8), 2293-2298. https://doi.org/10.16285/j.rsm.2014.08.040.
  16. Liu, L., Wu, R. and Congress, S.S. (2021), "Design optimization of the soil nail wall-retaining pile-anchor cable supporting system in a large-scale deep foundation pit", Acta Geotechnica, 16(7), 2251-2274. https://doi.org/10.1007/S11440-021-01154-4.
  17. Lohar, H., Mitra, A. and Sahoo, S. (2019), "Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation", Curved Layered Struct., 6(1), 90-104. https://doi.org/10.1515/cls-2019-0008.
  18. Liu, Z., Xue, J. and Ye, J. (2021), "A simplified two-stage method to estimate the settlement and bending moment of upper tunnel considering the interaction of undercrossing twin tunnels", Transport. Geotech., 29, 1-13. 100558. https://doi.org/10.1016/J.TRGEO.2021.100558.
  19. Limkatanyu, S., Sae-Long, W. and Hansapinyo, C. (2023). "Nonlinear shear-flexure-interaction RC frame element on Winkler-Pasternak foundation", Geomech. Eng., 32(1), 69-84. https://doi.org/10.12989/gae.2023.32.1.069.
  20. Mindlin, R.D. (1936), "Force at a point in the interior of a semi-infinite solid", Physics, 7(5), 195-202. https://doi.org/10.1063/1.1745385.
  21. Moradi, G. and Abbasnejad, A. (2015), "Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb", Geomech. Eng., 8(6), 829-844. https://doi.org/10.12989/gae.2015.8.6.829.
  22. Mei, Y., Zhou, D. and Wang, X., (2021), "Deformation law of the diaphragm wall during deep foundation pit construction on lake and sea soft soil in the Yangtze River Delta", Adv. Civil Eng., 2021, 1-11. https://doi.org/10.1155/2021/6682921.
  23. Nam, K.T., Jeong, J.H. and Kim, S.H. (2022), "Measures to control deformation in deep excavation for cut and cover tunneling", Geomech. Eng., 29(3), 339-348. https://doi.org/10.12989/gae.2022.29.3.339..
  24. Ou, C.Y., Shiau, B.Y. and Wang, I.W. (2000), "Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history", Can. Geotech. J., 37(2), 438-448. https://doi.org/10.1139/t00-018.
  25. Roboski, J.F. (2004), "Three-dimensional performance and analyses of deep excavations", Ph.D.Dissertation, Northwestern University. Evanxton.
  26. Szepeshazi, A., Mahler, A. and Moczar, B. (2016), "Three dimensional finite element analysis of deep excavations' concave corners", Periodica Polytechnica Civil Eng., 60(3), 371-378. https://doi.org/10.3311/PPCI.8608.
  27. Tan, Y., Wei, B. and Diao, Y. (2014). Spatial corner effects of long and narrow multipropped deep excavations in Shanghai soft clay", J Perform Constr Fac., 28(4), 1-17. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000475.
  28. Tan, J., Zheng, X. and Sun, Y. (2020), "Analysis of pit corner effect of special-shaped foundation pit of subway station", Proceedings of the IOP Conference Series: Earth and Environmental Science, Tokyo, Japan, October.
  29. Wei, G. and Zhao, C.L. (2016), "Calculation method of additional load of adjacent subway tunnel caused by excavation of foundation pit", J. Rock Mech. Eng., 35(1), 3408-3417. https://doi.org/10.13722/j.cnki.jrme.
  30. Wang, Z., Shi, C. and Gong, C. (2022), "Difference solutions for responses of foundation-beams with arbitrary boundary conditions considering spatial soil variability and its applications", Comput. Geotech., 151, 1-12. https://doi.org/10.1016/j.compgeo.2022.105002.
  31. Xia, G.Y. (2022), "Generalized foundation Timoshenko beam and its calculating methods", 92(3), 1015-1036. https://doi.org/10.1007/S00419-021-02090-1.
  32. Zhou, Z.L., Chen, S.G. and Chen, L. (2015), "Simplified theoretical analysis of the influence of foundation pit construction on the uplift deformation of underground subway tunnel", J. Geotech. Eng., 37(12), 2224-2234.
  33. Zhang, D.M., Huang, Z.K. and Li, Z.L. (2019), "Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath", Comput. Geotech., 108, 197-211. https://doi.org/10.1016/j.compgeo.2018.12.026.
  34. Zhang, Z., Zhang, C. and Jiang, K. (2019), "Analytical prediction for tunnel-soil-pile interaction mechanics based on Kerr foundation model", J. Civil Eng., 23(6), 2756-2771. https://doi.org/10.1007/s12205-019-0791-x.
  35. Zhang, Z.G., Jiang, K.M. and Wang, Z.W. (2020), "Theoretical analysis of longitudinal deformation of existing tunnel induced by foundation pit excavation considering Pasternak foundation model", Tunnel Constr., 40(1), 57-67.
  36. Zhang, Y.W., Ding, H.X. and She, G.L. (2023), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.