DOI QR코드

DOI QR Code

Mechanical and microstructural investigations on cement-treated expansive organic subgrade soil

  • Nazerke Sagidullina (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Jong Kim (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Alfrendo Satyanaga (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Taeseo Ku (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Sung-Woo Moon (Department of Civil and Environmental Engineering, Nazarbayev University)
  • 투고 : 2024.03.05
  • 심사 : 2024.07.15
  • 발행 : 2024.08.25

초록

Organic soils pose significant challenges in geotechnical engineering due to their high compressibility and low stability, which can result in issues like differential settlement, rutting, and pavement deformation. This study explores effective methods for stabilizing organic soils. Rather than conventional ordinary Portland cement (OPC), the focus is on using environmentally friendly calcium sulfoaluminate (CSA) cement, known for its rapid setting, high early strength development, and environmental benefits. Mechanical behavior is analyzed through 1-D free swell, unconfined compressive strength (UCS), and bender element (BE) tests. Microstructural analyses, including Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), characterize the soil mixed with CSA cement. Experimental results demonstrate improved soil properties with increasing cement dosage and curing periods. A notable strength increase is observed in soil samples with 15% cement content, with UCS doubling after 7 days. This trend aligns with shear wave velocity results from the BE test. SEM and FTIR spectroscopy reveal how CSA cement hydration forms hydrated calcium silicate gel and ettringite, enhancing soil properties. CSA cement is recommended for reinforcing organic subgrade soil due to its eco-friendly nature and rapid strength gain, contributing to improved durability.

키워드

과제정보

Funding: This research was funded by the Nazarbayev University, Collaborative Research Project (CRP) Grant No. 11022021CRP1508 and Faculty Development Competitive Research Grant Program (FDCRGP) Grant No. 20122022FD4115. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of Nazarbayev University.

참고문헌

  1. Ahmadullah, T. and Chrysochoou, M. (2024), "Relationship between strength development and pozzolanic reactions in lime stabilized kaolinite", Int. J. Geo-Eng., 15, (1), 11. 
  2. Ale, T.O. (2023), "Improving the geotechnical properties of a Nigerian termite reworked soil using pretest drying conditions and sawdust ash", Int. J. Geo-Eng., 14 (1), 1.
  3. Arasan, S. and Nasirpur, O (2015), "The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand", Geomech. Eng., 8(3), 361-375. https://doi.org/10.12989/gae.2015.8.3.361. 
  4. ASTM/D698 (2021), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort American Society for Testing and Materials Internationals; Philadelphia, USA.
  5. ASTM/D2166 (2006), Standard test method for unconfined compressive strength of cohesive soil, American Society for Testing and Materials International; Philadelphia, USA.
  6. ASTM/D2487 (2000), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), American Society for Testing and Materials Internationals; Philadelphia, USA.
  7. ASTM/D4546 (2014), Standard test methods for one-dimensional swell or collapse of soils, American Society for Testing and Materials Internationals; Philadelphia, USA.
  8. ASTM/D4829 (2003), Standard test method for expansion index of soils, American Society for Testing and Materials International; Philadelphia, USA.
  9. ASTM/D7348 (2013), Standard test methods for loss on ignition (LOI) of solid combustion residues, American Society for Testing and Materials International; Philadelphia, USA.
  10. ASTM/D8295 (2019), Standard Test Method for Determination of Shear Wave Velocity and Initial Shear Modulus in Soil Specimens Using Bender Elements, West Conshohocken, PA. 
  11. Bisserik, A., Kim, J., Satyanaga, A. and Moon, S.W. (2021), "Characterization of CSA cemented-treated sands via discrete element method", Proceedings of the AIP Conference, Kuala Lumpur, Malaysia, April. 
  12. Bushlaibi, A.H. and Alshamsi, A.M. (2002), "Efficiency of curing on partially exposed high-strength concrete in hot climate", Cement Concrete Res., 32(6), 949-953. https://doi.org/10.1016/S0008-8846(02)00735-4. 
  13. Chen, H. and Wang, Q. (2006), "The behaviour of organic matter in the process of soft soil stabilization using cement", Bull. Eng. Geol. Environ., 65, 445-448. https://doi.org/10.1007/s10064-005-0030-1. 
  14. Chub-uppakarn, T., Chompoorat, T., Thepumong, T., Sae-Long, W., Khamplod, A. and Chaiprapat, S. (2023), "Influence of partial substitution of metakaolin by palm oil fuel ash and alumina waste ash on compressive strength and microstructure in metakaolin-based geopolymer mortar", Case Studies in Constr. Mater., 19, e02519. http://dx.doi.org/10.1016/j.cscm.2023.e02519. 
  15. Consoli, N.C., Foppa, D., Festugato, L. and Heineck, K.S. (2007), "Key parameters for strength control of artificially cemented soils", J. Geotech. Geoenviron. Eng., 133(2), 197-205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197). 
  16. Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D. and Gartner E.M. (2008), "Sustainable development and climate change initiatives", Cement Concrete Res., 38(2), 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008. 
  17. Edil, T.B. and Wang, X. (2000), "Shear strength and Ko of peats and organic soils", Geotechnics of high water content materials, ASTM International. 
  18. Firoozi, A.A., Guney Olgun, C., Firoozi, A.A. and Baghini, M.S. (2017), "Fundamentals of soil stabilization", Int. J. Geo-Eng., 8, 1-16. https://doi.org/10.1186/s40703-017-0064-9. 
  19. Garcia-Gaines, RA. and Frankenstein, S. (2015), "USCS and the USDA soil classification system: Development of a mapping scheme", ERDC/CRREL; TR-15-4; Engineer Research and Development Center (U.S.) 
  20. Ghadr, S., Assadi Langroudi, A. and Bahadori, H. (2023), "Replacing C3S cement with PP fibre and nanobiosilica in stabilisation of organic Cclays", Geomech. Eng., 34(4), 401-414. https://doi.org/10.12989/gae.2023.33.4.401. 
  21. Ghazavi, M. and Roustaie, M. (2010), "The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay", Cold Reg. Sci. Technol., 61(2-3), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005. 
  22. Gidebo, F.A., Yasuhara, H. and Kinoshita, N. (2023), "Stabilization of expansive soil with agricultural waste additives: a review", Int. J. Geo-Eng., 14(1), 14. 
  23. Gross, J. and Adaska, W. (2020), "Guide to cement-stabilized subgrade soils", Portland Cement Association: Washington, DC, USA. 
  24. Gullu, H. and Fedakar, H.I. (2017), "Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber", Geomech. Eng., 13(1), 25-41. Proceedings 10.12989/gae.2017.13.1.025. 
  25. Hanein, T., Galvez-Martos, J.L. and Bannerman, M.N. (2018), "Carbon footprint of calcium sulfoaluminate clinker production". J. Cleaner Product., 172, 2278-2287. https://doi.org/10.1016/j.jclepro.2017.11.183. 
  26. Horpibulsuk, S., Katkan, W., Sirilerdwattana, W. and Rachan, R. (2006), "Strength development in cement stabilized low plasticity and coarse grained soils: Laboratory and field study", Soils Found., 46(3), 351-366. https://doi.org/10.3208/sandf.46.351. 
  27. Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y. and Suddeepong, A. (2010), "Analysis of strength development in cement-stabilized silty clay from microstructural considerations", Constr. Build. Mater., 24(10), 2011-2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011 
  28. Huang, P.T., Patel, M., Santagata, M.C. and Bobet, A. (2009), "Classification of organic soils", Publication FHWA/IN/JTRP-2008/02. https://doi.org/10.5703/1288284314328. 
  29. Ifediniru, C. and Ekeocha, N.E. (2022), "Performance of cement-stabilized weak subgrade for highway embankment construction in Southeast Nigeria", Int. J. Geo-Eng., 13(1), 1. https://doi.org/10.1186/s40703-021-00166-z. 
  30. Jexembayeva A, Salem T, Jiao P, Hou B, Niyazbekova R (2020), "Blended cement mixed with basic oxygen steelmaking slag (BOF) as an alternative green building material". Materials, 13, (14), 3062. https://doi.org/10.3390/ma13143062 
  31. Jumassultan, A., Sagidullina, N., Kim, J., Ku, T. and Moon, S.W. (2021), "Performance of cement-stabilized sand subjected to freeze-thaw cycles", Geomech. Eng., 25(1), 41-48. https://doi.org/10.12989/gae.2021.25.1.041. 
  32. Kamruzzaman, A., Chew, S. and Lee, F. (2009), "Structuration and destructuration behavior of cement-treated Singapore marine clay", J. Geotech. Geoenviron. Eng., 135(4), 573-589. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(573). 
  33. Khan, Q., Moon, S.W. and Ku, T. (2020), "Idealized sine wave approach to determine arrival times of shear wave signals using bender elements", Geotech. Test. J., 43(1), 171-193. https://doi.org/10.1520/GTJ20170121. 
  34. Ku, T., Subramanian, S. and Moon, S. (2020), "Effect of Gypsum on the strength of CSA treated sand", Proceedings of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, Taipei, Taiwan, October. 
  35. Ladd, R. (1978), "Preparing test specimens using undercompaction", Geotech. Test J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J. 
  36. Ma, C. and Zhang, F.H. (2014), "Analysis and improvement on output current quality of active clamped flyback type micro PV inverters", Proceedings of the CSEE, US, July. 
  37. Mekonnen, E., Amdie, Y., Etefa, H., Tefera, N. and Tafesse, M. (2022), "Stabilization of expansive black cotton soil using bioenzymes produced by ureolytic bacteria", Int. J. Geo-Eng., 13(1), 10. 
  38. Mitchell, J.K. and Soga, K. (2005), "Fundamentals of soil behavior", John Wiley & Sons New York. 
  39. Moon, S.W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2020), "Effect of fine particles on strength and stiffness of cement treated sand", Granular Matter., 22(1), 9. https://doi.org/10.1007/s10035-019-0975-6. 
  40. Mustafayeva, A., Bimykova, A., Olagunju, S.O., Kim, J., Satyanaga, A. and Moon, S.W. (2023), "Mechanical properties and microscopic mechanism of Basic Oxygen Furnace (BOF) slag-treated clay subgrades", Buildings, 13(12), 2962. https://doi.org/10.3390/buildings13122962. 
  41. Myslinska, E. (2003), "Classification of organic soils for engineering geology", Geol. Quart., 47, 39-42. 
  42. Niazi, Y. and Jalili, M. (2009), "Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion", Constr. Build. Mater., 23(3), 1338-1343. https://doi.org/10.1016/j.conbuildmat.2008.07.020. 
  43. Ocheme, J.I., Olagunju, S.O., Khamitov, R., Satyanaga, A., Kim, J. and Moon, S.W. (2023), "Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures", Geomech. Eng., 33(1), 41-51. https://doi.org/10.12989/gae.2023.33.1.041. 
  44. Olagunju, S.O., Mukhtarkhan, D., Kim, J., Satyanaga, A. and Moon, S.W. (2023), "Physical, mechanical, chemical, and environmental characterization of stockpiled BOF slag as railway ballast material", Constr. Build. Mater., 408, 133613. https://doi.org/10.1016/j.conbuildmat.2023.133613. 
  45. Phanikumar, B. (2009), "Effect of lime and fly ash on swell, consolidation and shear strength characteristics of expansive clays: a comparative study", Geomech. Geoeng., 4(2), 175-181. https://doi.org/10.1080/17486020902856983. 
  46. Pooni, J., Robert, D., Giustozzi, F., Setunge, S., Xie, Y. and Xia, J. (2020), "Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils", Constr. Build. Mater., 260, 120433. https://doi.org/10.1016/j.conbuildmat.2020.120433. 
  47. Prusinski, J.R. and Bhattacharja, S. (1999), "Effectiveness of Portland cement and lime in stabilizing clay soils", Transport. Res. Record, 1652(1), 215-227. https://doi.org/10.3141/1652-28. 
  48. Puppala, A.J., Intharasombat, N. and Vempati, R.K. (2005), "Experimental studies on ettringite-induced heaving in soils". J. Geotech. Geoenviron. Eng., 131(3), 325-337. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(325). 
  49. Regasa, H., Jothimani, M. and Oyda, Y. (2023), "Subgrade soil stabilization using the Quicklime: a case study from Modjo-Hawassa highway, Central Ethiopia", Int. J. Geo-Eng., 14(1), 17. 
  50. Sagidullina, N., Abdialim, S., Kim, J., Satyanaga, A. and Moon, S.W. (2022), "Influence of freeze-thaw cycles on physical and mechanical properties of cement-treated silty sand", Sustainability, 14(12), 7000. https://doi.org/10.3390/su14127000. 
  51. Saride, S., Puppala, A.J. and Chikyala, S.R. (2013), "Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays", Appl. Clay Sci., 85, 39-45.  https://doi.org/10.1016/j.clay.2013.09.008
  52. Sridharan, A. and Prakash, K. (2000), "Shrinkage limit of soil mixtures", Geotech. Test J., 23(1), 3-8. https://doi.org/10.1520/GTJ11118J. 
  53. Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA-treated sand for geotechnical application: microstructure analysis and rapid strength development", J. Mater. Civil Eng., 30(12), 04018313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002523. 
  54. Tremblay, H., Duchesne, J., Locat, J. and Leroueil, S. (2002), "Influence of the nature of organic compounds on fine soil stabilization with cement", Can. Geotech. J., 39(3), 535-546. https://doi.org/10.1139/t02-002. 
  55. Vinoth, G., Moon, S.W., Kim, J. and Ku, T. (2018), "Effect of fine particles on cement treated sand". Proceedings of China-Europe Conference on Geotechnical Engineering. 
  56. Vinoth, G., Moon, S.W., Moon, J. and Ku, T. (2018), "Early strength development in cement-treated sand using low-carbon rapid-hardening cements", Soils Found., 58(5), 1200-1211. https://doi.org/10.1016/j.sandf.2018.07.001. 
  57. Wei, X., Liu, H., Choo, H. and Ku, T. (2022), "Correlating failure strength with wave velocities for cemented sands from the particle-level analysis", Soil Dyn. Earthq. Eng., 152, 107062. https://doi.org/10.1016/j.soildyn.2021.107062. 
  58. Winnefeld, F. and Lothenbach, B. (2010), "Hydration of calcium sulfoaluminate cements-Experimental findings and thermodynamic modelling", Cement Concrete Res., 40(8), 1239-1247. https://doi.org/10.1016/j.cemconres.2009.08.014. 
  59. Zhang, Y., Johnson, A.E. and White, D.J. (2016), "Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials", Cold Reg. Sci. Technol., 122, 50-57. https://doi.org/10.1016/j.coldregions.2015.11.005. 
  60. Zivari, A., Siavoshnia, M. and Rezaei, H. (2023), "Effect of lime-rice husk ash on geotechnical properties of loess soil in Golestan province, Iran", Int. J. Geo-Eng., 14, (1), 20.