DOI QR코드

DOI QR Code

Development of tension estimation method without damper modeling error for cable with damper

  • Aiko Furukawa (Department of Urban Management, Graduate School of Engineering, Kyoto University) ;
  • Yuma Sugimachi (Department of Urban Management, Graduate School of Engineering, Kyoto University) ;
  • Tomohiro Takeichi (Kobelco Wire Company, Ltd.)
  • 투고 : 2024.05.12
  • 심사 : 2024.06.15
  • 발행 : 2024.06.25

초록

Estimating cable tension is important in the maintenance of cable structures, such as cable-stayed bridges. In practice, the higher-order vibration method based on natural frequencies is used. In recent years, dampers have been installed onto cables to suppress aerodynamic vibration. Because the higher-order vibration method is suitable to cables without a damper, the damper must be removed before using this method. Because damper removal is time-consuming and labor-intensive, a previous study proposed a tension estimation method for a cable with a damper based on the natural frequencies, which does not require the damper's removal. However, the previous method relies on the modeling accuracy of the damper's complex stiffness. The damper design formula, while intended for design purposes, does not consistently reflect the damper's actual complex stiffness. Therefore, the estimation accuracy deteriorates when the damper's actual complex stiffness deviates from the damper design formula. With this background, this paper introduces a novel tension estimation method based on mode shapes, which circumvents damper modeling errors since mode shapes are independent of the damper's complex stiffness. In the numerical verification using 90 models, the proposed method estimated tension accurately with an estimation error within 0.59%. In the experimental verification, the proposed method estimated tension accurately with an estimation error within 4.17% except for one case, while the previous method had an estimation error of 44% when the damper design formula was used. The proposed method was found to be superior to the previous method in terms of accuracy and practicality by numerical simulation and experiment.

키워드

과제정보

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

참고문헌

  1. Chen, C.C., Wu, W.H., Leu, M.R. and Lai, G. (2016), "Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements", Measurement, 86, 182-195. https://doi.org/10.1016/j.measurement.2016.02.053.
  2. Chen, C.C., Wu, W.H., Leu, M.R. and Lai, G. (2018), "A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions", Eng. Struct., 166, 152-166. https://doi.org/10.1016/j.engstruct.2018.03.070.
  3. Foti, F., Geuzaine, M. and Denoel, V. (2020), "On the identification of the axial force and bending stiffness of stay cables anchored to flexible supports", Appl. Math. Model., 92, 798-828. https://doi.org/10.1016/j.apm.2020.11.043.
  4. Furukawa, A., Goda, K. and Takeichi, T. (2023), "Tension estimation method using natural frequencies for cable equipped with two dampers", Struct. Monit. Maint., 10(4), 361-379. https://doi.org/10.12989/smm.2023.10.4.361.
  5. Furukawa, A., Hirose, K. and Kobayashi, R. (2021a), "Tension estimation method for cable with damper using natural frequencies", Front. Built Environ., 7(603857), https://doi.org/10.3389/fbuil.2021.603857.
  6. Furukawa, A., Hirose, K. and Kobayashi, R. (2022d), "Tension estimation method for cable with damper and its application to real cable-stayed bridge", (Eds., Wu, Z., Nagayama, T., Dang, J. and Astroza, R.), Experimental Vibration Analysis for Civil Engineering Structures. Lecture Notes in Civil Engineering, 224. Springer, Cham. https://doi-org.kyoto-u.idm.oclc.org/10.1007/978-3-030-93236-7_32.
  7. Furukawa, A., Kozuru, K. and Kobayashi, R. (2022c), "Method for estimating tension of two Nielsen-Lohse bridge cables with intersection clamp connection and unknown boundary conditions", Front. Built Environ., 8(906871). https://doi.org/10.3389/fbuil.2022.993958.
  8. Furukawa, A., Suzuki, S. and Kobayashi, R. (2022e), "Tension estimation method for cable with damper using natural frequencies with uncertain modal order", Front. Built Environ., 8(812999). https://doi.org/10.3389/fbuil.2022.812999.
  9. Furukawa, A., Suzuki, S. and Kobayashi, R. (2022f), "Tension estimation method for cable with damper using natural frequencies and two-point mode shapes with uncertain modal order", Front. Built Environ., 8(906871). https://doi.org/10.3389/fbuil.2022.906871.
  10. Furukawa, A., Yamada, S. and Kobayashi, R. (2022a), "Tension estimation methods for two cables connected by an intersection clamp using natural frequencies", J. Civ. Struct. Health Monit.. 12, 339-360. https://doi.org/10.1007/s13349-022-00548-6.
  11. Furukawa, A., Yamada, S. and Kobayashi, R. (2022b), "Tension estimation methods for Nielsen-Lohse bridges using out-of-plane and in-plane natural frequencies", Int. J. Geomate, 23(97), 1-11. https://doi.org/10.21660/2022.97.3235.
  12. Hou, J., Li, C., Jankowski, L., Shi, Y., Su, L., Yu, S. and Geng, T. (2020), "Damage identification of suspender cables by adding virtual supports with the substructure isolation method", Struct. Control Health Monit., 28(3), e2677, https://doi.org/10.1002/stc.2677.
  13. Izzi, M., Caracogilia, L. and Noe, S. (2016), "Investigating the use of Targeted-Energy-Transfer devices for stay-cable vibration mitigation", Struct. Control Health Monit., 23, 315-332. https://doi.org/10.1002/stc.1772.
  14. Javanbakht, M., Cheng, S. and Ghrib, F. (2019), "Control-oriented model for the dynamic response of a damped cable", J. Sound Vib., 442, 249-267. https://doi.org/10.1016/j.jsv.2018.10.036.
  15. Jeong, S., Kim H., Lee, J. and Sim, S.H. (2020), "Automated wireless monitoring system for cable tension force using deep learning", Struct. Health Monit., 20(4), 1805-1821. https://doi.org/10.1177/1475921720935837.
  16. Kim, B.H. and Park, T. (2007), "Estimation of cable tension force using the frequency-based system identification method", J. Sound Vib., 304, 660-676. https://doi.org/10.1016/j.jsv.2007.03.012.
  17. Kobelco Wire Company, Ltd. (2024), Tension measuring technique for outer cables. http://www.shinkowire.co.jp/products/vibration.html [Accessed: January 30, 2024]. (In Japanese)
  18. Krenk, S. (2000), "Vibration of a taut cable with an external damper", ASME, J. Appl. Mech., 67, 772-776. https://doi.org/10.1115/1.1322037.
  19. Lazar, I.F., Neild, S.A. and Wagg, D.J. (2016), "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017.
  20. Li, S., Wang, L., Wang, H., Shi, P., Lan, R., Wu, C. and Wang, X. (2021), "An accurate measurement method for tension force of short cable by additional mass block", Adv. Mater. Sci. Eng., 2021(6622628), https://doi.org/10.1155/2021/6622628.
  21. Liu G., Wang, X., Wang, X., Wan, Y. and Li, B. (2023), "Noncontact cable tension estimation using edge recognition technology based on convolutional network", Structures, 58(105337). https://doi-org.kyotou.idm.oclc.org/10.1016/j.istruc.2023.105337.
  22. Ma, L. (2017), "A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions", J. Sound Vib., 409, 65-80. https://doi.org/10.1016/j.jsv.2017.07.043.
  23. Ma, L., Xu, H., Munkhbaatar, T. and Li, S. (2021), "An accurate frequency-based method for identifying cable tension while considering environmental temperature variation", J. Sound Vib., 490(115693). https://doi.org/10.1016/j.jsv.2020.115693.
  24. MathWorks. (2024), MATLAB Documentation, MultiStart, https://jp.mathworks.com/help/gads/multistart.html [Accessed: January 30, 2024]. 
  25. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
  26. Shan, D., Zhou, X. and Khan, I. (2019), "Tension identification of suspenders with supplemental dampers for through and half-through arch bridges under construction", J. Struct. Eng. - ASCE, 145(3), Paper ID 04018265, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002255.
  27. Shi, X. and Zhu, S. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib. 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042.
  28. Shinke, T., Hironaka, K., Zui, H. and Nishimura, H. (1980), "Practical formulas for estimation of cable tension by vibration method", J. Japan Soc. Civil Engineers, 294, 25-32. (In Japanese) https://doi.org/10.2208/jscej1969.1980.294_25.
  29. Tabatabai, H. and Mehrabi, B. (2000), "Design of mechanical viscous dampers for stay cables", J. Bridge Eng.- ASCE, 5(2), 114-123. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(114).
  30. Weber, F. and Distl, H. (2015), "Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers", Struct. Control Health Monit., 22(2), 237-254. https://doi.org/10.1002/stc.1671.
  31. Yamagiwa, I., Utsuno, H., Endo, K. and Sugii, K. (2000), "Identification of flexural rigidity and tension of one-dimensional structure by measuring eigenvalues in higher order", Transactions of the Japan Soc. Mech. Engineers, 66(649), 2905-2911. (In Japanese) https://doi.org/10.1299/kikaic.66.2905.
  32. Yan, B., Chen, W., Dong, Y. and Jiang, X. (2020), "Tension force estimation of cables with two intermediate supports", Int. J. Struct. Stab. Dynam., 20(3), Paper ID 2050032, https://dx.doi.org/10.1142/S0219455420500327
  33. Yan, B., Chen., W., Yu, J. and Jiang, X. (2019), "Mode shape-aided tension force estimation of cable with arbitrary boundary conditions", J. Sound Vib., 440, 315-331. https://doi.org/10.1016/j.jsv.2018.10.018.
  34. Zarbaf, S.E.H.A.M., Norouzi, M., Allemang, R., Hunt, V. and Helmicki, A. (2017), "Stay cable tension estimation of cable-stayed bridges using genetic algorithm and particle swarm optimization", J. Bridge Eng., 22(10), Paper ID 05017008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001130.
  35. Zarbaf, S.E.H.A.M., Norouzi, M., Allemang, R., Hunt, V., Helmicki, A. and Venkatesh, C. (2018), "Vibration-based cable condition assessment: A novel application of neural networks", Eng. Struct., 177, 291-305. https://doi.org/10.1016/j.engstruct.2018.09.060.
  36. Zui, H., Sinke, T. and Namita, Y. (1996), "Practical formulas for estimation of cable tension by vibration method", J. Struct. Eng. - ASCE, 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651).